Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertens Res ; 46(10): 2368-2377, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592041

RESUMO

Soluble uric acid (UA) absorbed by cells through UA transporters (UATs) accumulates intracellularly, activates the NLRP3 inflammasome and thereby increases IL-1ß secretion. ABCG2 transporter excludes intracellular UA. However, it remains unknown whether ABCG2 inhibition leads to intracellular accumulation of UA and increases IL-1ß production. In this study, we examined whether genetic and pharmacological inhibition of ABCG2 could increase IL-1ß production in mouse macrophage-like J774.1 cells especially under hyperuricemic conditions. We determined mRNA and protein levels of pro-IL-1ß, mature IL-1ß, caspase-1 and several UATs in culture supernatants and lysates of J774.1 cells with or without soluble UA pretreatment. Knockdown experiments using an shRNA against ABCG2 and pharmacological experiments with an ABCG2 inhibitor were conducted. Extracellularly applied soluble UA increased protein levels of pro-IL-1ß, mature IL-1ß and caspase-1 in the culture supernatant from lipopolysaccharide (LPS)-primed and monosodium urate crystal (MSU)-stimulated J774.1 cells. J774.1 cells expressed UATs of ABCG2, GLUT9 and MRP4, and shRNA knockdown of ABCG2 increased protein levels of pro-IL-1ß and mature IL-1ß in the culture supernatant. Soluble UA increased mRNA and protein levels of ABCG2 in J774.1 cells without either LPS or MSU treatment. An ABCG2 inhibitor, febuxostat, but not a urate reabsorption inhibitor, dotinurad, enhanced IL-1ß production in cells pretreated with soluble UA. In conclusion, genetic and pharmacological inhibition of ABCG2 enhanced IL-1ß production especially under hyperuricemic conditions by increasing intracellularly accumulated soluble UA that activates the NLRP3 inflammasome and pro-IL-1ß transcription in macrophage-like J774.1 cells.


Assuntos
Inflamassomos , Ácido Úrico , Camundongos , Animais , Ácido Úrico/farmacologia , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , RNA Interferente Pequeno/farmacologia , RNA Mensageiro/farmacologia , Caspases/farmacologia
2.
Mol Biol Rep ; 49(7): 5939-5952, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35368226

RESUMO

BACKGROUND: Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS: Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1ß secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1ß. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1ß, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1ß and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS: Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.


Assuntos
Remodelamento Atrial , Gota , Canal de Potássio Kv1.5/metabolismo , Animais , Caspase 1/metabolismo , Gota/tratamento farmacológico , Gota/metabolismo , Gota/patologia , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
3.
Circ J ; 85(2): 130-138, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33342914

RESUMO

Serum uric acid (UA) is taken up by endothelial cells and reduces the level of nitric oxide (NO) by inhibiting its production and accelerating its degradation. Cytosolic and plasma xanthine oxidase (XO) generates superoxide and also decreases the NO level. Thus, hyperuricemia is associated with impaired endothelial function. Hyperuricemia is often associated with vascular diseases such as chronic kidney disease (CKD) and cardiovascular disease (CVD). It has long been debated whether hyperuricemia is causally related to the development of these diseases. The 2020 American College of Rheumatology Guideline for the Management of Gout (ACR2020) does not recommend pharmacological treatment of hyperuricemia in patients with CKD/CVD. In contrast, the Japanese Guideline on Management of Hyperuricemia and Gout (JGMHG), 3rdedition, recommends pharmacological treatment of hyperuricemia in patients with CKD. In a FREED study on Japanese hyperuricemic patients with CVD, an XO inhibitor, febuxostat, improved the primary composite endpoint of cerebro-cardio-renovascular events, providing a rationale for the use of urate-lowering agents (ULAs). Since a CARES study on American gout patients with CVD treated with febuxostat revealed increased mortality, ACR2020 recommends switching to different ULAs. However, there was no difference in the mortality of Japanese patients between the febuxostat-treated group and the placebo or allopurinol-treated groups in either the FEATHER or FREED studies.


Assuntos
Doenças Cardiovasculares , Gota , Hiperuricemia , Insuficiência Renal Crônica , Ácido Úrico/sangue , Alopurinol/uso terapêutico , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/tratamento farmacológico , Células Endoteliais , Febuxostat/uso terapêutico , Gota/tratamento farmacológico , Supressores da Gota/uso terapêutico , Humanos , Hiperuricemia/tratamento farmacológico , Japão , Guias de Prática Clínica como Assunto , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Fatores de Risco
4.
Circ J ; 83(4): 718-726, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30787218

RESUMO

BACKGROUND: Intracellular uric acid is known to increase the protein level and channel current of atrial Kv1.5; however, mechanisms of the uric acid-induced enhancement of Kv1.5 expression remain unclear. Methods and Results: The effects of uric acid on mRNA and protein levels of Kv1.5, as well as those of Akt, HSF1 and Hsp70, in HL-1 cardiomyocytes were studied by using qRT-PCR and Western blotting. The uptake of uric acid was measured using radio-labeled uric acid. The Kv1.5-mediated channel current was also measured by using patch clamp techniques. Uric acid up-taken by HL-1 cells significantly increased the level of Kv1.5 proteins in a concentration-dependent manner, with this increase abolished by an uric acid transporter inhibitor. Uric acid slowed degradation of Kv1.5 proteins without altering its mRNA level. Uric acid enhanced phosphorylation of Akt and HSF1, and thereby increased both transcription and translation of Hsp70; these effects were abolished by a PI3K inhibitor. Hsp70 knockdown abolished the uric acid-induced increases of Kv1.5 proteins and channel currents. CONCLUSIONS: Intracellular uric acid could stabilize Kv1.5 proteins through phosphorylation of Akt and HSF1 leading to enhanced expression of Hsp70.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Canal de Potássio Kv1.5/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ácido Úrico/farmacologia , Animais , Linhagem Celular , Canal de Potássio Kv1.5/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas , Transcrição Gênica
5.
Circ Rep ; 1(11): 469-473, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33693087

RESUMO

Among the several independent risk factors for atrial fibrillation (AF), hyperuricemia has been widely accepted as associated with the incidence of paroxysmal or persistent AF, as well as with the risk of AF in patients undergoing cardiovascular surgery. The electrophysiological mechanism of AF involves electrical remodeling of the arrhythmogenic substrate and abnormal automaticity as trigger. Both electrical and structural remodeling mediated by oxidative stress derived from either xanthine oxidoreductase (XOR), soluble uric acid (UA) or monosodium urate (MSU) crystals might be plausible explanations for the association of AF with hyperuricemia. XOR generates reactive oxygen species (ROS) that lead to atrial structural remodeling via inflammation. Soluble UA accumulates intracellularly through UA transporters (UAT), shortening the atrial action potential via enhanced expression and activity of Kv1.5 channel proteins. Intracellular accumulation of soluble UA generates ROS in atrial myocytes via nicotinamide adenine dinucleotide phosphate oxidase, which phosphorylates ERK/Akt and heat shock factor 1 (HSF1), thereby increasing transcription and translation of Hsp70, which stabilizes Kv1.5. In macrophages, MSU activates the NLRP3 inflammasome and proteolytic processing mediated by caspase-1 with enhanced interleukin (IL)-1ß and IL-18 secretion. Use of an XOR inhibitor, antioxidants, a UAT inhibitor such as a uricosuric agent, and an NLRP3 inflammasome inhibitor, might become a potential strategy to reduce the risk of hyperuricemia-induced AF, and control serum UA level.

6.
J Mol Cell Cardiol ; 115: 158-169, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29355491

RESUMO

The human ether-a-go-go-related gene (hERG) encodes the α subunit of a rapidly activating delayed-rectifier potassium (IKr) channel. Mutations of the hERG cause long QT syndrome type 2 (LQT2). Acetylation of lysine residues occurs in a subset of non-histone proteins and this modification is controlled by both histone acetyltransferases and deacetylases (HDACs). The aim of this study was to clarify effects of HDAC(s) on wild-type (WT) and mutant hERG proteins. WThERG and two trafficking-defective mutants (G601S and R752W) were transiently expressed in HEK293 cells, which were treated with a pan-HDAC inhibitor Trichostatin A (TSA) or an isoform-selective HDAC6 inhibitor Tubastatin A (TBA). Both TSA and TBA increased protein levels of WThERG and induced expression of mature forms of the two mutants. Immunoprecipitation showed an interaction between HDAC6 and immature forms of hERG. Coexpression of HDAC6 decreased acetylation and, reciprocally, increased ubiquitination of hERG, resulting in its decreased expression. siRNA against HDAC6, as well as TBA, exerted opposite effects. Immunochemistry revealed that HDAC6 knockdown increased expression of the WThERG and two mutants both in the endoplasmic reticulum and on the cell surface. Electrophysiology showed that HDAC6 knockdown or TBA treatment increased the hERG channel current corresponding to the rapidly activating delayed-rectifier potassium current (IKr) in HEK293 cells stably expressing the WT or mutants. Three lysine residues (K116, K495 and K757) of hERG were predicted to be acetylated. Substitution of these lysine residues with arginine eliminated HDAC6 effects. In HL-1 mouse cardiomyocytes, TBA enhanced endogenous ERG expression, increased IKr, and shortened action potential duration. These results indicate that hERG is a substrate of HDAC6. HDAC6 inhibition induced acetylation of hERG which counteracted ubiquitination leading its stabilization. HDAC6 inhibition may be a novel therapeutic option for LQT2.


Assuntos
Canal de Potássio ERG1/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas Mutantes/metabolismo , Acetilação/efeitos dos fármacos , Animais , Canal de Potássio ERG1/química , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Lisina/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
7.
Biomed Res ; 38(4): 229-238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794400

RESUMO

Proepicardium (PE) cells generate cardiac fibroblasts, smooth muscle cells (SMCs) and endothelial cells that form coronary arteries. T-box18 (Tbx18) is a well-known marker of PE cells and epicardium. We examined whether Tbx18-positive cells differentiated from murine embryonic stem (ES) cells serve as PE progenitors to give rise to vascular SMCs and fibroblasts. To collect Tbx18-positive cells, we established Tbx18-EGFP knock-in mouse ES cells using the CRISPR/Cas9 system. We harvested the Tbx18-EGFP-positive cells on day 8, 10 and 14 after the initiation of differentiation; Tbx18 mRNA was enriched on day 8 to 14 and Snai2 mRNA was enriched on day 8 and 10, indicating successful collection of Tbx18-positive cells. Tbx18-EGFP-positive cells expressed the PE marker WT1 on day 8 and 10. They also expressed the SMC marker Acta2 and fibroblast markers Thy1 and Fsp1 on day 8 to 14, but did not express the endothelial cell marker PECAM or the cardiac cell marker CD166 or Myh7. In conclusion, Tbx18-positive cells represent a part of PE cells in the initial phase of differentiation and subsequently include SMCs as well as fibroblasts. These results indicate that Tbx18-positive cells serve as a PE progenitor to supply a variety of cells that contribute to the formation of coronary arteries.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Pericárdio/citologia , Proteínas com Domínio T/metabolismo , Animais , Biomarcadores , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Expressão Gênica , Técnicas de Introdução de Genes , Ordem dos Genes , Marcação de Genes , Genes Reporter , Vetores Genéticos/genética , Camundongos , Microscopia de Fluorescência , Músculo Liso Vascular/citologia , Pericárdio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...