Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(18): 8109-8119, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38651638

RESUMO

An electride is a compound that contains a localized electron in an empty crystallographic site. This class of materials has a wide range of applications, including superconductivity, batteries, photonics, and catalysis. Both polymorphs of Yb5Sb3 (the orthorhombic Ca5Sb3F structure type (ß phase) and hexagonal Mn5Si3 structure type (α phase)) are known to be electrides with electrons localized in 0D tetrahedral cavities and 1D octahedral chains, respectively. In the case of the orthorhombic ß phase, an interstitial H can occupy the 0D tetrahedral cavity, accepting the anionic electron that would otherwise occupy the site, providing the formula of Yb5Sb3Hx. DFT computations show that the hexagonal structure is energetically favored without hydrogen and that the orthorhombic structure is more stable with hydrogen. Polycrystalline samples of orthorhombic ß phase Yb5Sb3Hx (x = 0.25, 0.50, 0.75, 1.0) were synthesized, and both PXRD lattice parameters and 1H MAS NMR were used to characterize H composition. Magnetic and electronic transport properties were measured to characterize the transition from the electride (semimetal) to the semiconductor. Magnetic susceptibility measurements indicate a magnetic moment that can be interpreted as resulting from either the localized antiferromagnetically coupled electride or the presence of a small amount of Yb3+. At lower H content (x = 0.25, 0.50), a low charge carrier mobility consistent with localized electride states is observed. In contrast, at higher H content (x = 0.75, 1.0), a high charge carrier mobility is consistent with free electrons in a semiconductor. All compositions show low thermal conductivity, suggesting a potentially promising thermoelectric material if charge carrier concentration can be fine-tuned. This work provides an understanding of the structure and electronic properties of the electride and semiconductor, Yb5Sb3Hx, and opens the door to the interstitial design of electrides to tune thermoelectric properties.

2.
Inorg Chem ; 62(15): 6003-6010, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37023266

RESUMO

The compound Ba2ZnSb2 has been predicted to be a promising thermoelectric material, potentially achieving zT > 2 at 900 K due to its one-dimensional chains of edge-shared [ZnSb4/2]4- tetrahedra and interspersed Ba cations. However, the high air sensitivity of this material makes it difficult to measure its thermoelectric properties. In this work, isovalent substitution of Eu for Ba was carried out to make Ba2-xEuxZnSb2 in order to improve the stability of the material in air and to allow characterization of thermal and electronic properties of three different compositions (x = 0.2, 0.3, and 0.4). Polycrystalline samples were synthesized using binary precursors via ball milling and annealing, and their thermoelectric properties were measured. Samples showed low thermal conductivity (<0.8 W/m K), a high Seebeck coefficient (350-550 µV/K), and high charge carrier mobility (20-35 cm2/V) from 300 to 500 K, consistent with predictions of high thermoelectric efficiency. Evaluation of the thermoelectric quality factor suggests that a higher zT can be attained if the carrier concentration can be increased via doping.

3.
NPJ Comput Mater ; 9(1): 222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666056

RESUMO

In recent times, transformer networks have achieved state-of-the-art performance in a wide range of natural language processing tasks. Here we present a workflow based on the fine-tuning of BERT models for different downstream tasks, which results in the automated extraction of structured information from unstructured natural language in scientific literature. Contrary to existing methods for the automated extraction of structured compound-property relations from similar sources, our workflow does not rely on the definition of intricate grammar rules. Hence, it can be adapted to a new task without requiring extensive implementation efforts and knowledge. We test our data-extraction workflow by automatically generating a database for Curie temperatures and one for band gaps. These are then compared with manually curated datasets and with those obtained with a state-of-the-art rule-based method. Furthermore, in order to showcase the practical utility of the automatically extracted data in a material-design workflow, we employ them to construct machine-learning models to predict Curie temperatures and band gaps. In general, we find that, although more noisy, automatically extracted datasets can grow fast in volume and that such volume partially compensates for the inaccuracy in downstream tasks.

4.
J Phys Condens Matter ; 35(4)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541539

RESUMO

We report bulk magnetization measurements and spatially resolved measurements of magnetic domains inCo3Sn2S2single crystals. The results indicate that a previously reported magnetic anomaly around 130 K is due to an anomalous domain wall depinning upon cooling. Our measurements also reveal a hysteresis between field-cooled-cooling and field-cooled-warming magnetization curves acquired under a constant magnetic field below 300 Oe. This observation rules out the possibility that the anomaly stems from a second-order phase transition. Our results further suggest that changes in the shape of hysteresis loops from 5 to 170 K are caused by an unusual temperature-dependent domain nucleation field that changes sign around 130 K. The Kerr rotation images of the magnetic domains confirm that the domain walls depin between 120 and 140 K.

5.
Inorg Chem ; 60(8): 5711-5723, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33784079

RESUMO

The structure, magnetic properties, and 151Eu and 119Sn Mössbauer spectra of the solid-solution Eu11-xSrxZn4Sn2As12 are presented. A new commensurately modulated structure is described for Eu11Zn4Sn2As12 (R3m space group, average structure) that closely resembles the original structural description in the monoclinic C2/c space group with layers of Eu, puckered hexagonal Zn2As3 sheets, and Zn2As6 ethane-like isolated pillars. The solid-solution Eu11-xSrxZn4Sn2As12 (0 < x < 10) is found to crystallize in the commensurately modulated R3 space group, related to the parent phase but lacking the mirror symmetry. Eu11Zn4Sn2As12 orders with a saturation plateau at 1 T for 7 of the 11 Eu2+ cations ferromagnetically coupled (5 K) and shows colossal magnetoresistance at 15 K. The magnetic properties of Eu11Zn4Sn2As12 are investigated at higher fields, and the ferromagnetic saturation of all 11 Eu2+ cations occurs at ∼8 T. The temperature-dependent magnetic properties of the solid solution were investigated, and a nontrivial structure-magnetization correlation is revealed. The temperature-dependent 151Eu and 119Sn Mössbauer spectra confirm that the europium atoms in the structure are all Eu2+ and that the tin is consistent with an oxidation state of less than four in the intermetallic region. The spectral areas of both Eu(II) and Sn increase at the magnetic transition, indicating a magnetoelastic effect upon magnetic ordering.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33091882

RESUMO

A method is presented for synthesizing core-shell nanoparticles with a magnetic core and a porous shell suitable for drug delivery and other medical applications. The core contains multiple $\gamma$-Fe$_2$O$_3$ nanoparticles ($\sim$15~nm) enclosed in a SiO$_2$ ($\sim$100-200~nm) matrix using either methyl (denoted TMOS-$\gamma$-Fe$_2$O$_3$) or ethyl (TEOS-$\gamma$-Fe$_2$O$_3$) template groups. Low-temperature M{\"o}ssbauer spectroscopy showed that the magnetic nanoparticles have the maghemite structure, $\gamma$-Fe$_2$O$_3$, with all the vacancies in the octahedral sites. Saturation magnetization measurements revealed that the density of $\gamma$-Fe$_2$O$_3$ was greater in the TMOS-$\gamma$-Fe$_2$O$_3$ nanoparticles than TEOS-$\gamma$-Fe$_2$O$_3$ nanoparticles, presumably because of the smaller methyl group. Magnetization measurements showed that the blocking temperature is around room temperature for the TMOS-$\gamma$-Fe$_2$O$_3$ and around 250~K for the TEOS-$\gamma$-Fe$_2$O$_3$. Three dimensional topography analysis shows clearly that the magnetic nanoparticles are not only at the surface but have penetrated deep in the silica to form the core-shell structure.

7.
ACS Appl Mater Interfaces ; 12(4): 4741-4748, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31880904

RESUMO

Solid-state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here, we report a simple, scalable approach allowing for manipulation of the superconducting transition in optimally doped YBa2Cu3O7-δ (YBCO) films via a chemically driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective step toward total ionic tuning of superconductivity in oxides, an interface-induced effect that goes well into the quasi-bulk regime, opening-up possibilities for electric field manipulation.

8.
Nat Commun ; 8(1): 546, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916829

RESUMO

Experimental and theoretical investigations on itinerant ferromagnetic systems under pressure have shown that ferromagnetic quantum criticality is avoided either by a change of the transition order, becoming of the first order at a tricritical point, or by the appearance of modulated magnetic phases. In the first case, the application of a magnetic field reveals a wing-structure phase diagram as seen in itinerant ferromagnets such as ZrZn2 and UGe2. In the second case, no tricritical wings have been observed so far. Here, we report on the discovery of wing-structure as well as the appearance of modulated magnetic phases in the temperature-pressure-magnetic field phase diagram of LaCrGe3. Our investigation of LaCrGe3 reveals a double-wing structure indicating strong similarities with ZrZn2 and UGe2. But, unlike these simpler systems, LaCrGe3 also shows modulated magnetic phases similar to CeRuPO. This finding provides an example of an additional possibility for the phase diagram of metallic quantum ferromagnets.The study of phase transitions in quantum ferromagnets has shown that the approach to a continuous quantum ferromagnetic transition is typically interrupted by either a tricritical point or a new magnetic phase. Here the authors show that LaCrGe3 exhibits both these features in its phase diagram.

9.
Chemistry ; 23(44): 10516-10521, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28631435

RESUMO

Planar hydrocarbon-like metal clusters may foster new insights linking organic molecules with conjugated π-π bonding interactions and inorganic structures in terms of their bonding characteristics. However, such clusters are uncommon in polar intermetallics. Herein, we report two polar intermetallic phases, Pr5 Co2 Ge3 and Pr7 Co2 Ge4 , both of which feature such planar metal clusters, namely, ethylene-like [Co2 Ge4 ] clusters plus the concatenated forms and polyacene-like [Co2 Ge2 ]n ribbons in Pr5 Co2 Ge3 , and 1,2,4,5-tetramethylbenzene-like [Co4 Ge6 ] cluster in Pr7 Co2 Ge4 . Just as in the related planar organic structures, these metal-metalloid species are dominated by covalent bonding interactions. Both compounds magnetically order at low temperature with net ferromagnetic components: Pr5 Co2 Ge3 through a series of transitions below 150 K and Pr7 Co2 Ge4 through a single ferromagnetic transition at 19 K. Spin-polarized electronic structure calculations for Pr7 Co2 Ge4 reveal strong spin-orbit coupling within Pr and considerable magnetic contributions from Co atoms. This work suggests that similar structural chemistry can emerge for other rare-earth/late-transition-metal/main-group systems.

10.
Phys Rev Lett ; 117(3): 037207, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27472137

RESUMO

The temperature-pressure phase diagram of the ferromagnet LaCrGe_{3} is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFM_{Q}. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe_{3} is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...