Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 056406, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682893

RESUMO

Isochoric heating of matter by intense heavy ion beams promises to become a fruitful approach to warm dense matter studies. For heating times that are long on the hydrodynamic time scale of the target response a tamped target is essential. The proposed dynamic confinement provides homogeneous target heating by a low-Z tamper, which allows one to apply powerful x-ray scattering diagnostics. To demonstrate the potential of the method, heating of a hydrogen sample with the SIS-18 beam at GSI Darmstadt is investigated numerically. The intense x-ray bursts for diagnostics can be provided by the PHELIX laser currently installed at GSI. In the optimized heating regime, density variations can be reduced to a level of 15% from the initial density value.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(1 Pt 2): 016402, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11304360

RESUMO

Employing a two-dimensional simulation model, this paper presents a suitable design for an experiment to study metallization of hydrogen in a heavy-ion beam imploded multilayered cylindrical target that contains a layer of frozen hydrogen. Such an experiment will be carried out at the upgraded heavy-ion synchrotron facility (SIS-18) at the Gesellschaft für Schwerionenforschung, Darmstadt by the end of the year 2001. In these calculations we consider a uranium beam that will be available at the upgraded SIS-18. Our calculations show that it may be possible to achieve theoretically predicted physical conditions necessary to create metallic hydrogen in such experiments. These include a density of about 1 g/cm(3), a pressure of 3-5 Mbar, and a temperature of a few 0.1 eV.

3.
Artigo em Inglês | MEDLINE | ID: mdl-11088581

RESUMO

This paper presents two-dimensional numerical simulations of the hydrodynamic response of solid as well as hollow cylindrical targets made of lead that are irradiated by an intense beam of uranium ions which has an annular focal spot. Using a particle tracking computer code, it has been shown that a plasma lens can generate such a beam with parameters used in the calculations presented in this paper. The total number of particles in the beam is 2x10(11) and the particle energy is about 200 MeV/u that means a total energy of approximately 1.5 kJ. This energy is delivered in a pulse that is 50 ns long. These beam parameters lead to a specific energy deposition of 50-100 kJ/g and a specific power deposition of 1-2 TW/g in solid matter. These calculations show that in case of the solid lead cylinder, it may be possible to achieve more than 4 times solid lead density along the cylinder axis at the time of maximum compression. The pressure in the compressed region is about 20 Mbar and the temperature is a few eV. In the case of a hollow cylinder, one also achieves the same degree of compression but now the temperature in the compressed region is much higher (over 10 eV). Such samples of highly compressed matter can be used to study the equation-of-state properties of high-energy-density matter. It is expected that by the end of the year 2001, after completion of the upgrade of the existing facilities, the above beam parameters will be available at the Gesellschaft fur Schwerionenforschung (GSI), Darmstadt. This will open up the possibility to carry out very interesting experiments on a number of important problems including the investigation of the EOS of high-energy-density matter.

4.
Phys Rev Lett ; 85(21): 4518-21, 2000 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-11082585

RESUMO

A specifically tailored plasma lens could shape a high-energy, heavy-ion beam into the form of a hollow cylinder without loss of beam intensity. It has been experimentally confirmed that both a positive as well as a negative radial gradient of the current density in the active plasma lens can be the underlying principle. Calculations were performed that yield the ideal current density distribution for both cases. A numerical simulation of an experiment with an intense ion beam highlights that the shaping of the beam increases the achievable compression in a lead sample.

5.
Artigo em Inglês | MEDLINE | ID: mdl-11046484

RESUMO

In this paper is presented, with the help of sophisticated two-dimensional hydrodynamic simulations, a suitable design with optimized parameters for a heavy-ion beam-matter interaction experiment that will be carried out at the Gesellschaft fur Schwerionenforschung (GSI) Darmstadt by the end of the year 2001 when the upgrade of the existing accelerator facility will be completed. Our simulations show that this upgraded heavy-ion beam is capable of generating strong shocks in solid targets that compress the target material to supersolid densities and generate multi-mbar pressures. This will open up, at the GSI, the possibility of investigation of the equation-of-state properties of matter under such extreme conditions. Numerical simulations can predict the experimental results with reasonable accuracy, which is helpful in designing the diagnostic tools for the experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...