RESUMO
Plasma-liquid interaction research has developed substantially in recent years due, mostly, to the numerous applications of cold atmospheric plasma (CAP). Plasma-liquid interactions are influenced by the concentrations of the ionic species present in the liquid environment, and few studies have paid attention to saline water, which generally mediates the reactions in many plasma applications. Therefore, the present review aims to explore the main results and the influence of variables on the modification of properties of saline water by CAP sources following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The searches were carried out in the Scopus, Science Direct, and Web of Science databases, resulting in the inclusion of 37 studies. The main effects of the interaction between CAP and saline water are (i) the production of reactive oxygen and nitrogen species (RONS); (ii) the increase in conductivity and decrease in pH, directly proportional to the increase in discharge voltage; (iii) and the effective area of interaction and the shortest distance between electrode and solution. Other effects are the localized evaporation and crystallization of salts, which make the interaction between plasma and saline water a promising field in the development of technologies for desalination and improvement of liquid properties.
RESUMO
In this study, five new recently described Monosporascus species, M. brasiliensis, M. caatinguensis, M. mossoroensis, M. nordestinus, and M. semiaridus, which were found on weeds collected from cucurbit cultivation fields in northeastern Brazil, are characterized regarding mycelial growth at different pH levels and salinity (NaCl) concentrations, their pathogenicity to selected cucurbit species, and their sensitivity to fungicides with different modes of action. Our results reveal great variability among the representative isolates of each Monosporascus spp. All of them showed a wide range of tolerance to different pH levels, and NaCl significantly reduced their in vitro mycelial growth, although no concentration was able to inhibit them completely. In pathogenicity tests, all seedlings of cucurbits evaluated, melon, watermelon, cucumber, and pumpkin, were susceptible to the five Monosporascus spp. in greenhouse experiments using artificial inoculation of roots. Moreover, all Monosporascus spp. were highly susceptible to the fungicides fludioxonil and fluazinam. Our findings provide relevant information about the response of these new Monosporascus spp. to environmental factors, plant genotypes and fungicides.