Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 44(3-4): 450-461, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448415

RESUMO

To date, a comprehensive systematic optimization framework, capable of accurately predicting an efficient electrode geometry, is not available. Here, different geometries, including 3D step electrodes, have been designed in order to fabricate AC electroosmosis micropumps. It is essential to optimize both geometrical parameters of electrode, such as width and height of steps on each base electrode and their location in one pair, the size of each base electrode (symmetric or asymmetric), the gap of electrode pairs, and nongeometrical parameters such as fluid flow in a channel and electrical characteristics (e.g., frequency and voltage). The governing equations comprising of electric domain and fluid domain have been coupled using finite element method. The developed model was employed to investigate the effect of electrode geometric parameters on electroosmotic slip velocity and its subsequent effect on pressure and flow rate. Numerical simulation indicates that the optimal performance can be achieved using a design with varying step height and displacement, at a given voltage (2.5 V) and frequency (1 kHz). Finally, in order to validate the numerical simulation, the optimal microchip was fabricated using a combination of photolithography, electroplating, and a polydimethylsiloxane microchannel. Our results indicate that our micropump is capable of generating a pressure, velocity, and flow rate of 74.2 Pa, 1.76 mm/s, and 14.8 µl/min, respectively. This result reveals that our proposed geometry outperforms the state-of-the-art micropumps previously reported in the literature by improving the fluid velocity by 32%, with 80% less electrodes per unit length, and whereas the channel length is ∼80% shorter.


Assuntos
Eletricidade , Eletro-Osmose , Eletrodos , Simulação por Computador
2.
Electrophoresis ; 43(13-14): 1476-1520, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35452525

RESUMO

Accurate manipulation of fluids in microfluidic devices is an important factor affecting their functions. Since the emergence of microfluidic technology to transport fluids in microchannels, the electric field has been utilized as an effective dynamic pumping mechanism. This review attempts to provide a fundamental insight of the various electric-driven flows in microchannels and their working mechanisms as micropumps for microfluidic devices. Different electrokinetic mechanisms implemented in electrohydrodynamic-, electroosmosis-, electrothermal, and dielectrophoresis-based micropumps are discussed. A detailed description of different mechanisms is presented to provide a comprehensive overview on the key parameters used in electric micropumps. Furthermore, electrode configurations and their shapes in different micropumps are explored and categorized to provide conclusive information for the selection of efficient, simple, and affordable strategies to transport fluids in microfluidic devices. In this paper, recent theoretical, numerical and experimental investigations are covered to provide a better insight both on the operational mechanisms and strategies for lab-on-chip applications.


Assuntos
Eletro-Osmose , Técnicas Analíticas Microfluídicas , Eletricidade , Eletrodos , Microfluídica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...