Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 21(212): 20230369, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38442857

RESUMO

Most ordinary differential equation (ODE) models used to describe biological or physical systems must be solved approximately using numerical methods. Perniciously, even those solvers that seem sufficiently accurate for the forward problem, i.e. for obtaining an accurate simulation, might not be sufficiently accurate for the inverse problem, i.e. for inferring the model parameters from data. We show that for both fixed step and adaptive step ODE solvers, solving the forward problem with insufficient accuracy can distort likelihood surfaces, which might become jagged, causing inference algorithms to get stuck in local 'phantom' optima. We demonstrate that biases in inference arising from numerical approximation of ODEs are potentially most severe in systems involving low noise and rapid nonlinear dynamics. We reanalyse an ODE change point model previously fit to the COVID-19 outbreak in Germany and show the effect of the step size on simulation and inference results. We then fit a more complicated rainfall run-off model to hydrological data and illustrate the importance of tuning solver tolerances to avoid distorted likelihood surfaces. Our results indicate that, when performing inference for ODE model parameters, adaptive step size solver tolerances must be set cautiously and likelihood surfaces should be inspected for characteristic signs of numerical issues.


Assuntos
Algoritmos , COVID-19 , Humanos , COVID-19/epidemiologia , Simulação por Computador , Surtos de Doenças , Alemanha
2.
J Theor Biol ; 511: 110541, 2021 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33271182

RESUMO

Variation is characteristic of all living systems. Laboratory techniques such as flow cytometry can probe individual cells, and, after decades of experimentation, it is clear that even members of genetically identical cell populations can exhibit differences. To understand whether variation is biologically meaningful, it is essential to discern its source. Mathematical models of biological systems are tools that can be used to investigate causes of cell-to-cell variation. From mathematical analysis and simulation of these models, biological hypotheses can be posed and investigated, then parameter inference can determine which of these is compatible with experimental data. Data from laboratory experiments often consist of "snapshots" representing distributions of cellular properties at different points in time, rather than individual cell trajectories. These data are not straightforward to fit using hierarchical Bayesian methods, which require the number of cell population clusters to be chosen a priori. Nor are they amenable to standard nonlinear mixed effect methods, since a single observation per cell is typically too few to estimate parameter variability. Here, we introduce a computational sampling method named "Contour Monte Carlo" (CMC) for estimating mathematical model parameters from snapshot distributions, which is straightforward to implement and does not require that cells be assigned to predefined categories. The CMC algorithm fits to snapshot probability distributions rather than raw data, which means its computational burden does not, like existing approaches, increase with the number of cells observed. Our method is appropriate for underdetermined systems, where there are fewer distinct types of observations than parameters to be determined, and where observed variation is mostly due to variability in cellular processes rather than experimental measurement error. This may be the case for many systems due to continued improvements in resolution of laboratory techniques. In this paper, we apply our method to quantify cellular variation for three biological systems of interest and provide Julia code enabling others to use this method.


Assuntos
Algoritmos , Modelos Biológicos , Teorema de Bayes , Simulação por Computador , Método de Monte Carlo
3.
J R Soc Interface ; 15(144)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30021928

RESUMO

As systems approaches to the development of biological models become more mature, attention is increasingly focusing on the problem of inferring parameter values within those models from experimental data. However, particularly for nonlinear models, it is not obvious, either from inspection of the model or from the experimental data, that the inverse problem of parameter fitting will have a unique solution, or even a non-unique solution that constrains the parameters to lie within a plausible physiological range. Where parameters cannot be constrained they are termed 'unidentifiable'. We focus on gaining insight into the causes of unidentifiability using inference-based methods, and compare a recently developed measure-theoretic approach to inverse sensitivity analysis to the popular Markov chain Monte Carlo and approximate Bayesian computation techniques for Bayesian inference. All three approaches map the uncertainty in quantities of interest in the output space to the probability of sets of parameters in the input space. The geometry of these sets demonstrates how unidentifiability can be caused by parameter compensation and provides an intuitive approach to inference-based experimental design.


Assuntos
Modelos Biológicos , Teorema de Bayes , Cadeias de Markov , Método de Monte Carlo , Dinâmica não Linear
4.
Evol Appl ; 10(7): 731-741, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28717392

RESUMO

The risk of extinction faced by small isolated populations in changing environments can be reduced by rapid adaptation and subsequent growth to larger, less vulnerable sizes. Whether this process, called evolutionary rescue, is able to reduce extinction risk and sustain population growth over multiple generations is largely unknown. To understand the consequences of adaptive evolution as well as maladaptive processes in small isolated populations, we subjected experimental Tribolium castaneum populations founded with 10 or 40 individuals to novel environments, one more favorable, and one resource poor, and either allowed evolution, or constrained it by replacing individuals one-for-one each generation with those from a large population maintained in the natal environment. Replacement individuals spent one generation in the target novel environment before use to standardize effects due to the parental environment. After eight generations we mixed a subset of surviving populations to facilitate admixture, allowing us to estimate drift load by comparing performance of mixed to unmixed groups. Evolving populations had reduced extinction rates, and increased population sizes in the first four to five generations compared to populations where evolution was constrained. Performance of evolving populations subsequently declined. Admixture restored their performance, indicating high drift load that may have overwhelmed the beneficial effects of adaptation in evolving populations. Our results indicate that evolution may quickly reduce extinction risk and increase population sizes, but suggest that relying solely on adaptation from standing genetic variation may not provide long-term benefits to small isolated populations of diploid sexual species, and that active management facilitating gene flow may be necessary for longer term persistence.

5.
Comput Mech ; 60(1): 51-68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32025072

RESUMO

We construct a stabilized finite-element method to compute flow and finite-strain deformations in an incompressible poroelastic medium. We employ a three-field mixed formulation to calculate displacement, fluid flux and pressure directly and introduce a Lagrange multiplier to enforce flux boundary conditions. We use a low order approximation, namely, continuous piecewise-linear approximation for the displacements and fluid flux, and piecewise-constant approximation for the pressure. This results in a simple matrix structure with low bandwidth. The method is stable in both the limiting cases of small and large permeability. Moreover, the discontinuous pressure space enables efficient approximation of steep gradients such as those occurring due to rapidly changing material coefficients or boundary conditions, both of which are commonly seen in physical and biological applications.

6.
Int J Numer Method Biomed Eng ; 32(1): e02731, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26100614

RESUMO

We develop a lung ventilation model based on a continuum poroelastic representation of lung parenchyma that is strongly coupled to a pipe network representation of the airway tree. The continuous system of equations is discretized using a low-order stabilised finite element method. The framework is applied to a realistic lung anatomical model derived from computed tomography data and an artificially generated airway tree to model the conducting airway region. Numerical simulations produce physiologically realistic solutions and demonstrate the effect of airway constriction and reduced tissue elasticity on ventilation, tissue stress and alveolar pressure distribution. The key advantage of the model is the ability to provide insight into the mutual dependence between ventilation and deformation. This is essential when studying lung diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis. Thus the model can be used to form a better understanding of integrated lung mechanics in both the healthy and diseased states. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Pneumopatias/fisiopatologia , Pulmão/fisiopatologia , Modelos Biológicos , Troca Gasosa Pulmonar , Ventilação Pulmonar , Reologia/métodos , Animais , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Porosidade
7.
SIAM J Numer Anal ; 54(5): 2974-3002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29081546

RESUMO

We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.

8.
Math Biosci ; 270(Pt A): 95-105, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26596714

RESUMO

There are two stages generally recognized in the viral capsid assembly: nucleation and elongation. This paper focuses on the nucleation stage and develops mathematical models for HIV-1 viral capsid nucleation based on six-species dynamical systems. The Particle Swarm Optimization (PSO) algorithm is used for parameter fitting to estimate the association and dissociation rates from biological experiment data. Numerical simulations of capsid protein (CA) multimer concentrations demonstrate a good agreement with experimental data. Sensitivity and elasticity analysis of CA multimer concentrations with respect to the association and dissociation rates further reveals the importance of CA trimer-of- dimers in the nucleation stage of viral capsid self- assembly.


Assuntos
HIV-1/fisiologia , Modelos Biológicos , Montagem de Vírus/fisiologia , Algoritmos , Capsídeo/química , Capsídeo/fisiologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/fisiologia , Simulação por Computador , HIV-1/química , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Conceitos Matemáticos , Modelos Moleculares , Multimerização Proteica
9.
Ecol Appl ; 16(6): 2208-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17205898

RESUMO

Chronic wasting disease (CWD), a contagious prion disease of the deer family, has the potential to severely harm deer populations and disrupt ecosystems where deer occur in abundance. Consequently, understanding the dynamics of this emerging infectious disease, and particularly the dynamics of its transmission, has emerged as an important challenge for contemporary ecologists and wildlife managers. Although CWD is contagious among deer, the relative importance of pathways for its transmission remains unclear. We developed seven competing models, and then used data from two CWD outbreaks in captive mule deer and model selection to compare them. We found that models portraying indirect transmission through the environment had 3.8 times more support in the data than models representing transmission by direct contact between infected and susceptible deer. Model-averaged estimates of the basic reproductive number (R0) were 1.3 or greater, indicating likely local persistence of CWD in natural populations under conditions resembling those we studied. Our findings demonstrate the apparent importance of indirect, environmental transmission in CWD and the challenges this presents for controlling the disease.


Assuntos
Modelos Biológicos , Doença de Emaciação Crônica/transmissão , Animais , Cervos , Surtos de Doenças , Doença de Emaciação Crônica/mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...