Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9450, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658797

RESUMO

The absence of biodegradability exhibited by plastics is a matter of significant concern among environmentalists and scientists on a global scale. Therefore, it is essential to figure out potential pathways for the use of recycled plastics. The prospective applications of its utilisation in concrete are noteworthy. The use of recycled plastic into concrete, either as a partial or complete substitution for natural aggregates, addresses the issue of its proper disposal besides contributing to the preservation of natural aggregate resources. Furthermore, the use of agricultural wastes has been regarded as a very promising waste-based substance in the industry of concrete manufacturing, with the aim of fostering the creation of an environmentally sustainable construction material. This paper illustrates the impact of nano sunflower ash (NSFA) and nano walnut shells ash (NWSA) on durability (compressive strength and density after exposure to 800 °C and sulphate attack), mechanical properties (flexural, splitting tensile and compressive strength) and fresh characteristics (slump flow diameter, T50, V-funnel flow time, L-box height ratio, segregation resistance and density) of lightweight self-compacting concrete (LWSCC). The waste walnut shells and local Iraqi sunflower were calcinated at 700 ± 50 °C for 2 h and milled for 3 h using ball milling for producing NSFA and NWSA. The ball milling succeeded in reducing the particle size lower than 75 nm for NSFA and NWSA. The preparation of seven LWSCC concrete mixes was carried out to obtain a control mix, three mixtures were created using 10%, 20% and 30% NWSA, and the other three mixtures included 10%, 20% and 30% NSFA. The normal weight coarse aggregates were substituted by the plastic waste lightweight coarse aggregate with a ratio of 75%. The fresh LWSCC passing capacity, segregation resistance, and filling capability were evaluated. The hardened characteristics of LWSCC were evaluated by determining the flexural and splitting tensile strength at 7, 14 and 28 days and the compressive strength was measured at 7, 14, 28 and 60 days. Dry density and compressive strength were measured after exposing mixes to a temperature of 800 °C for 3 h and immersed in 10% magnesium sulphate attack. The results demonstrated that the LWSCC mechanical characteristics were reduced when the percentages of NWSA and NSFA increased, except for 10% NWSA substitution ratio which had an increase in splitting tensile strength test and similar flexural strength test to the control mixture. A minor change in mechanical characteristics was observed within the results of LWSCC dry density and compressive strength incorporating various NSFA and NWSA` contents after exposing to temperature 800 °C and immersed in 10% magnesium sulphate attack. Furthermore, according to the findings, it is possible to use a combination of materials consisting of 10-20% NSFA and 10-20% NWSA to produce LWSCC.

2.
Environ Sci Pollut Res Int ; 31(18): 27329-27344, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512577

RESUMO

Recently, the usage of a cold-bonded method in the production of artificial green geopolymer coarse aggregates (GCA) has been crucial from an economic and environmental perspective because the sintering method consumes an enormous quantity of energy and generates a significant quantity of pollutants. This research investigated the manufacture of GCA via cold-bonded pelletization using two distinct industrial byproducts (GGBFS and FA) via a new and simpler pelletization technology. Three different binders were used to produce three distinct types of GCAs as partial replacements for natural coarse aggregate (NCA) at varying replacement rates (0%, 25%, 50%, and 75%). The first group used ground-granulated blast furnace slag, while the second used GGBFS with perlite, and the third used FA with perlite. An alkaline activator was commonly used with all three groups. The physical and mechanical properties of three distinct varieties of GCA were recorded. The results indicated that the mechanical and chemical properties of three different types of GCAs were nearly identical to those of natural aggregate, with the exception of their increased water absorption. According to the findings, the recommended mixtures were suitable for usage in the construction industry. The results indicated that the ratio of all investigated attributes declined as the number of GCAs increased. In contrast, lightweight concrete can be obtained at a ratio of GCA (FA with perlite) equal to 75%, where unit weight, compressive, splitting tensile, flexural, and water absorption strengths were 1.87 gm/cm3, 20.2 MPa, 1.8 MPa, 8 MPa, and 6.0%, respectively (FA with perlite).


Assuntos
Materiais de Construção , Polímeros/química , Indústria da Construção
3.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959507

RESUMO

The goal of this paper is to investigate the impact of nano-materials on the mechanical and electrochemical properties of self-cleaning concrete. Nano-titanium dioxide and nano-zinc oxide were used as additives for this purpose. Additionally, a comparative study on the effect of using these materials on the self-cleaning concrete's characteristics was conducted. The dosages of nano-titanium dioxide (nps-TiO2) and nano-zinc oxide (nps-ZnO) used were 0, 0.5, 1, 1.5, 2, and 2.5% and 0, 1, 2, and 3% of the weight of the cement, respectively. The results showed that the optimum compressive strength and the lowest corrosion rate were fulfilled at 2.5% of nps-TiO2 and 1% of nps-ZnO, and using 2.5% of nps-TiO2 achieved the highest improvement in the corrosion rate. However, 1% for nps-TiO2 mixtures and 1% for nps-ZnO mixtures were the best ratios for flexural strength. On the other hand, for the corrosion rate, the samples were tested at 2 and 6 months. When nps-TiO2 and nps-ZnO samples were compared to the control sample, 2.5% and 1% of nps-TiO2 and nps-ZnO, respectively, showed the largest improvement in resistance to corrosion. Also, the self-cleaning property of the samples containing nano-materials (nps-TiO2 and nps-ZnO) was tested. As the results illustrated, the self-cleaning property of the samples was increased over time due to photocatalytic degradation. Furthermore, the results of the photocatalytic tests showed that nps-TiO2 samples outperformed nps-ZnO samples overall.

4.
Environ Sci Pollut Res Int ; 29(32): 49253-49266, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212904

RESUMO

An effort is being conducted to enhance some characteristics of self-compacted concrete (SCC) and clean the environment through the addition of waste plastic fibers resulting from the cuts of waste medical radiology. A number of tests were carried out to examine the impact of waste medical radiology (WMR) fiber additions with various aspect ratios and various percentages on SCC characteristics. Thus, various SCC mixes were designed at a constant water-to-binder ratio of 0.33 and 550 kg/m3 of binder content. The four groups of WMR fiber content were specified with different aspect ratios of (0, 40, 50, and 60) with various ratios of (1%, 1.25, and 1.5%) by volume of concrete. The workability characteristics of SCC mixes were determined by fresh density, segregation resistance, L-box height ratio, T50 slump with V-funnel flow time, and slump flow diameter. Also, the measurement of thermal conductivity, compressive, flexural, and splitting tensile strengths were performed at 28 days for SCC mixtures. The findings revealed that WMR fibers have a negative impact on the fresh characteristics of SCC except for segregation resistance, which improved. However, the results of splitting tensile and compressive strengths were enhanced at 1% WMR fiber content with various aspect ratios then decreased. However, all results of flexural strength were reduced in comparison with the control mixture excluding samples containing 1% WMR fibers with an aspect ratio of 50 which showed a higher result. The outcomes of thermal conductivity were reduced with the usage of various WMR fiber percentages and various aspect ratios in comparison with the control mixture, and the best result was obtained at 1.25% WMR fiber with an aspect ratio of 50.


Assuntos
Materiais de Construção , Radiologia , Força Compressiva , Plásticos , Resistência à Tração
5.
Materials (Basel) ; 13(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066052

RESUMO

This investigation presents the influence of various types of nanoparticles on the performance of ultra high performance concrete (UHPC). Three nanoparticles from waste materials include nano-crushed glass, nano-metakaolin, nano-rice husk ash were prepared using the milling technique. In addition, nano-silica prepared using chemical method at the laboratory is implemented to compare the performance. Several UHPC mixes incorporating different dosages of nanoparticles up to 5% are prepared and tested. Mechanical properties, durability as well as the microstructure of UHPC mixes have been evaluated in order to study the influence of nanoparticles on the hardened characteristics of UHPC. The experimental results showed that early strength is increased by the incorporation of nanomaterials, as compared to the reference UHPC mix. The incorporation of 3% nano-rice husk ash produced the highest compressive strength at 91 day. Microstructural measurements using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and Thermogravimetric Analysis (TGA) confirm the role of nanomaterials in densifying the microstructure, reducing calcium hydroxide content as well as producing more C-S-H, which improves the strength and reduces the absorption of UHPC. Nanoparticles prepared from waste materials by the milling technique are comparable to chemically prepared nanosilica in improving mechanical properties, refining the microstructure and reducing the absorption of UHPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...