Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37480242

RESUMO

AIMS: This study aims to prioritize fungal strains recovered from under-explored habitats that produce new metabolites. HRMS dereplication is used to avoid structure redundancy, and molecular modelling is used to assign absolute configuration. METHODS AND RESULTS: MBC15-11F was isolated from an amphipod and identified using ITS, 28S, and ß-tubulin phylogeny as Aspergillus sydowii. Chemical profiling using taxonomic-based dereplication identified structurally diverse metabolites, including unreported ones. Large-scale fermentation led to the discovery of a new N-acyl adenosine derivative: (S)-sydosine (1) which was elucidated by NMR and HRESIMS analyses. Two known compounds were also identified as predicted by the initial dereplication process. Due to scarcity of 1, molecular modelling was used to assign its absolute configuration without hydrolysis, and is supported by advanced Mosher derivatization. When the isolated compounds were assessed against a panel of bacterial pathogens, only phenamide (3) showed anti-Staphylococcus aureus activity. CONCLUSION: Fermentation of A. sydowii yielded a new (S)-sydosine and known metabolites as predicted by HRESIMS-aided dereplication. Molecular modelling prediction of the absolute configuration of 1 agreed with advanced Mosher analysis.


Assuntos
Anfípodes , Animais , Aspergillus , Staphylococcus aureus/genética , Estrutura Molecular
2.
J Clin Transl Hepatol ; 11(3): 638-648, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36969895

RESUMO

Background and Aims: The prevalence of chronic liver disease in adults exceeds 30% in some countries and there is significant interest in developing tests and treatments to help control disease progression and reduce healthcare burden. Breath is a rich sampling matrix that offers non-invasive solutions suitable for early-stage detection and disease monitoring. Having previously investigated targeted analysis of a single biomarker, here we investigated a multiparametric approach to breath testing that would provide more robust and reliable results for clinical use. Methods: To identify candidate biomarkers we compared 46 breath samples from cirrhosis patients and 42 from controls. Collection and analysis used Breath Biopsy OMNI™, maximizing signal and contrast to background to provide high confidence biomarker detection based upon gas chromatography mass spectrometry (GC-MS). Blank samples were also analyzed to provide detailed information on background volatile organic compounds (VOCs) levels. Results: A set of 29 breath VOCs differed significantly between cirrhosis and controls. A classification model based on these VOCs had an area under the curve (AUC) of 0.95±0.04 in cross-validated test sets. The seven best performing VOCs were sufficient to maximize classification performance. A subset of 11 VOCs was correlated with blood metrics of liver function (bilirubin, albumin, prothrombin time) and separated patients by cirrhosis severity using principal component analysis. Conclusions: A set of seven VOCs consisting of previously reported and novel candidates show promise as a panel for liver disease detection and monitoring, showing correlation to disease severity and serum biomarkers at late stage.

3.
Nat Prod Res ; 36(11): 2917-2922, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34039169

RESUMO

Cancer is a hazard life-threatening disease, which affect huge population worldwide. Marine actinomycetes are considered as promising source for potential chemotherapeutic agents. In our study, we carried out metabolic profiling for Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 that were cultivated from the Red Sea sponge Amphimedon sp. to investigate their chemical diversity using different media conditions. The crude culture extracts were subjected to high-resolution mass spectrometry (HRMS) analysis. The chemical profiles of the different extracts of Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 revealed their richness in diverse metabolites and consequently twenty compounds (1-20) were annotated. Moreover, the obtained extracts of the differently cultivated Nocardia sp. UR 86 and Nocardiopsis sp. UR 92 were investigated against three cell lines HepG2, MCF-7 and CACO2 and revealed the targeted cytotoxicity of Nocardia sp. and Nocardiopsis sp. metabolites against the three cell lines.


Assuntos
Actinobacteria , Antineoplásicos , Nocardia , Poríferos , Actinobacteria/química , Actinomyces , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CACO-2 , Humanos , Nocardia/química , Nocardiopsis
4.
Sci Rep ; 11(1): 8405, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863934

RESUMO

Tabebuia is the largest genus among the family Bignoniaceae. Tabebuia species are known for their high ornamental and curative value. Here, the cytotoxic potential of extracts from the leaves and stems of five Tabebuia species was analyzed. The highest activity was observed for T. rosea (Bertol.) DC. stem extract against HepG2 cell line (IC50 4.7 µg/mL), T. pallida L. stem extract against MCF-7 cell line (IC50 6.3 µg/mL), and T. pulcherrima stem extract against CACO2 cell line (IC50 2.6 µg/mL). Metabolic profiling of the ten extracts using liquid chromatography-high-resolution mass spectrometry for dereplication purposes led to annotation of forty compounds belonging to different chemical classes. Among the annotated compounds, irridoids represent the major class. Principle component analysis (PCA) was applied to test the similarity and variability among the tested species and the score plot showed similar chemical profiling between the leaves and stems of both T. pulcherrima and T. pallida L. and unique chemical profiling among T. rosea (Bertol.) DC., T. argentea Britton, and T. guayacan (Seem.) Hemsl. leaf extracts and the stem extract of T. rosea (Bertol.) DC. Additionally, a molecular correlation analysis was used to annotate the bioactive cytotoxic metabolites in the extracts and correlate between their chemical and biological profiles.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Metaboloma/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Extratos Vegetais/farmacologia , Tabebuia/química , Células CACO-2 , Células Hep G2 , Humanos , Células MCF-7 , Neoplasias/metabolismo , Neoplasias/patologia
5.
Microorganisms ; 9(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546180

RESUMO

With more than 156,000 described species, eukaryotic algae (both macro- and micro-algae) are a rich source of biological diversity, however their chemical diversity remains largely unexplored. Specialised metabolites with promising biological activities have been widely reported for seaweeds, and more recently extracts from microalgae have exhibited activity in anticancer, antimicrobial, and antioxidant screens. However, we are still missing critical information on the distinction of chemical profiles between macro- and microalgae, as well as the chemical space these metabolites cover. This study has used an untargeted comparative metabolomics approach to explore the chemical diversity of seven seaweeds and 36 microalgal strains. A total of 1390 liquid chromatography-mass spectrometry (LC-MS) features were detected, representing small organic algal metabolites, with no overlap between the seaweeds and microalgae. An in-depth analysis of four Dunaliella tertiolecta strains shows that environmental factors may play a larger role than phylogeny when classifying their metabolomic profiles.

6.
RSC Adv ; 11(13): 7318-7330, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35423273

RESUMO

Mentha species are medicinally used worldwide and remain attractive for research due to the diversity of their phytoconstituents and large therapeutic indices for various ailments. This study used the metabolomics examination of five Mentha species (M. suaveolens, M. sylvestris, M. piperita, M. longifolia, and M. viridis) to justify their cytotoxicity and their anti-Helicobacter effects. The activities of species were correlated with their phytochemical profiles by orthogonal partial least square discriminant analysis (OPLS-DA). Tentatively characterized phytoconstituents using liquid chromatography high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) included 49 compounds: 14 flavonoids, 10 caffeic acid esters, 7 phenolic acids, and other constituents. M. piperita showed the highest cytotoxicity to HepG2 (human hepatoma), MCF-7 (human breast adenocarcinoma), and CACO2 (human colon adenocarcinoma) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. OPLS-DA and dereplication studies predicted that the cytotoxic activity was related to benzyl glucopyranoside-sulfate, a lignin glycoside. Furthermore, M. viridis was effective in suppressing the growth of Helicobacter pylori at a concentration of 50 mg mL-1. OPLS-DA predicted that this activity was related to a dihydroxytrimethoxyflavone. M. viridis extract was formulated with Pluronic® F127 to develop polymeric micelles as a nanocarrier that enhanced the anti-Helicobacter activity of the extract and provided minimum inhibitory concentrations and minimum bactericidal concentrations of 6.5 and 50 mg mL-1, respectively. This activity was also correlated to tentatively identified constituents, including rosmarinic acid, catechins, carvone, and piperitone oxide.

8.
ACS Chem Neurosci ; 11(19): 3161-3173, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32886481

RESUMO

There is an intense search for natural compounds that can inhibit the oligomerization and fibrillation of α-synuclein (α-Syn), whose aggregation is key to the development of Parkinson's disease (PD). Rosa damascena is a medicinal herb widely used in Middle Eastern food, ceremonies, and perfumes. The herb is known to contain many different polyphenols. Here we investigated the existence of α-Syn fibrillation inhibitors in R. damascena extract. Different HPLC fractions of the extract were assessed in α-Syn fibrillation and toxicity assays. The most active fractions led to the formation of more α-Syn oligomers but with less toxicity to SH-SY5Y cells, according to MTT and LDH assays. LC-MS analysis identified gallic acid, kaempferol 3-glucoside, kaempferol-3-O-ß-rutinoside, and quercetin which were subsequently shown to be strong α-Syn fibrillation inhibitors. Our results highlight the benefits of R. damascena extract to combat PD at the population level.


Assuntos
Rosa , alfa-Sinucleína , Flavonoides/farmacologia , Glicosídeos/farmacologia , Humanos , Fenóis/toxicidade
9.
BMC Plant Biol ; 20(1): 235, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450804

RESUMO

BACKGROUND: Cereal grains, including wheat (Triticum aestivum L.), are major sources of food and feed, with wheat being dominant in temperate zones. These end uses exploit the storage reserves in the starchy endosperm of the grain, with starch being the major storage component in most cereal species. However, oats (Avena sativa L.) differs in that the starchy endosperm stores significant amounts of oil. Understanding the control of carbon allocation between groups of storage compounds, such as starch and oil, is therefore important for understanding the composition and hence end use quality of cereals. WRINKLED1 is a transcription factor known to induce triacylglycerol (TAG; oil) accumulation in several plant storage tissues. RESULTS: An oat endosperm homolog of WRI1 (AsWRI1) expressed from the endosperm-specific HMW1Dx5 promoter resulted in drastic changes in carbon allocation in wheat grains, with reduced seed weight and a wrinkled seed phenotype. The starch content of mature grain endosperms of AsWRI1-wheat was reduced compared to controls (from 62 to 22% by dry weight (dw)), TAG was increased by up to nine-fold (from 0.7 to 6.4% oil by dw) and sucrose from 1.5 to 10% by dw. Expression of AsWRI1 in wheat grains also resulted in multiple layers of elongated peripheral aleurone cells. RNA-sequencing, lipid analyses, and pulse-chase experiments using 14C-sucrose indicated that futile cycling of fatty acids could be a limitation for oil accumulation. CONCLUSIONS: Our data show that expression of oat endosperm WRI1 in the wheat endosperm results in changes in metabolism which could underpin the application of biotechnology to manipulate grain composition. In particular, the striking effect on starch synthesis in the wheat endosperm indicates that an important indirect role of WRI1 is to divert carbon allocation away from starch biosynthesis in plant storage tissues that accumulate oil.


Assuntos
Proteínas de Arabidopsis/genética , Avena/genética , Endosperma/metabolismo , Óleos de Plantas/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Triticum/genética , Proteínas de Arabidopsis/metabolismo , Avena/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Triticum/metabolismo
10.
Metabolites ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383761

RESUMO

Euphorbia is a large genus of flowering plants with a great diversity in metabolic pattern. Testing the cytotoxic potential of fifteen Euphorbia species revealed highest activity of E. officinarum L. against CACO2 cell line (IC50 7.2 µM) and of E. lactea Haw. against HepG2 and MCF-7 cell lines (IC50 5.2 and 5.1 µM, respectively). Additionally, metabolic profiling of the fifteen tested species, using LC-HRMS, for dereplication purposes, led to the annotation of 44 natural compounds. Among the annotated compounds, diterpenoids represent the major class. Dereplication approach and multivariate data analysis are adopted in order to annotate the compounds responsible for the detected cytotoxic activity. Results of PCA come in a great accordance with results of biological testing, which emphasized the cytotoxic properties of E. lactea Haw. A similarity correlation network showed that the two compounds with the molecular formula C16H18O8 and C20H30O10, are responsible for cytotoxic activity against MCF-7 and HepG2 cell lines. Similarly, the compound with molecular formula C18H35NO correlates with cytotoxic activity against CACO2.

11.
Phytochem Anal ; 31(2): 204-214, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31390115

RESUMO

INTRODUCTION: Metabolomics is a fast growing technology that has effectively contributed to many plant-related sciences and drug discovery. OBJECTIVE: To use the non-targeted metabolomics approach to investigate the chemical profiles of three Malvaceae plants, namely Hibiscus mutabilis L. (Changing rose), H. schizopetalus (Dyer) Hook.f. (Coral Hibiscus), and Malvaviscus arboreus Cav. (Sleeping Hibiscus), along with evaluating their antioxidant and anti-infective potential. METHODOLOGY: Metabolic profiling was carried out using liquid chromatography coupled with high-resolution electrospray ionisation mass spectrometry (LC-HR-ESI-MS) for dereplication purposes. The chemical composition of the studied plants was further compared by principal component analysis (PCA). The antioxidant and anti-infective properties of their different extracts were correlated to their phytochemical profiles by orthogonal partial least square discriminant analysis (OPLS-DA). RESULTS: A variety of structurally different metabolites, mostly phenolics, were characterized. Comparing the distribution pattern of these tentatively identified metabolites among the studied plant species/fractions revealed the chemical uniqueness of the dichloromethane fraction of M. arboreus. Some extracts and fractions of these plants demonstrated noteworthy antioxidant and antitrypanosomal potential; the latter was partly attributed to their anti-protease activities. The active principles of these plants were pinpointed before any laborious isolation steps, to avoid the redundant isolation of previously known compounds. CONCLUSION: This study highlighted the use of the established procedure in exploring the metabolomes of these species, which could be helpful for chemotaxonomic and authentication purposes, and might expand the basis for their future phytochemical analysis. Coupling the observed biological potential with LC-MS data has also accelerated the tracing of their bioactive principles.


Assuntos
Malvaceae , Cromatografia Líquida de Alta Pressão , Metaboloma , Metabolômica , Compostos Fitoquímicos , Extratos Vegetais , Espectrometria de Massas por Ionização por Electrospray
12.
Molecules ; 24(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866428

RESUMO

Brine, the historically known food additive salt solution, has been widely used as a pickling media to preserve flavor or enhance food aroma, appearance, or other qualities. The influence of pickling, using brine, on the aroma compounds and the primary and secondary metabolite profile in onion bulb Allium cepa red cv. and lemon fruit Citrus limon was evaluated using multiplex metabolomics technologies. In lemon, pickling negatively affected its key odor compound "citral", whereas monoterpene hydrocarbons limonene and γ-terpinene increased in the pickled product. Meanwhile, in onion sulphur rearrangement products appeared upon storage, i.e., 3,5-diethyl-1,2,4-trithiolane. Profiling of the polar secondary metabolites in lemon fruit via ultra-performance liquid chromatography coupled to MS annotated 37 metabolites including 18 flavonoids, nine coumarins, five limonoids, and two organic acids. With regard to pickling impact, notable and clear separation among specimens was observed with an orthogonal projections to least squares-discriminant analysis (OPLS-DA) score plot for the lemon fruit model showing an enrichment of limonoids and organic acids and that for fresh onion bulb showing an abundance of flavonols and saponins. In general, the pickling process appeared to negatively impact the abundance of secondary metabolites in both onion and lemon, suggesting a decrease in their food health benefits.


Assuntos
Citrus/química , Fixadores/farmacologia , Metaboloma/efeitos dos fármacos , Cebolas/química , Sais/farmacologia , Citrus/efeitos dos fármacos , Cumarínicos/análise , Flavonoides/análise , Cromatografia Gasosa-Espectrometria de Massas , Limoninas/análise , Metabolômica/métodos , Cebolas/efeitos dos fármacos , Metabolismo Secundário/efeitos dos fármacos , Microextração em Fase Sólida
13.
Sci Rep ; 9(1): 2547, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796274

RESUMO

Bulb, leaf, scape and flower samples of British bluebells (Hyacinthoides non-scripta) were collected regularly for one growth period. Methanolic extracts of freeze-dried and ground samples showed antitrypanosomal activity, giving more than 50% inhibition, for 20 out of 41 samples. High-resolution mass spectrometry was used in the dereplication of the methanolic extracts of the different plant parts. The results revealed differences in the chemical profile with bulb samples being distinctly different from all aerial parts. High molecular weight metabolites were more abundant in the flowers, shoots and leaves compared to smaller molecular weight ones in the bulbs. The anti-trypanosomal activity of the extracts was linked to the accumulation of high molecular weight compounds, which were matched with saponin glycosides, while triterpenoids and steroids occurred in the inactive extracts. Dereplication studies were employed to identify the significant metabolites via chemotaxonomic filtration and considering their previously reported bioactivities. Molecular networking was implemented to look for similarities in fragmentation patterns between the isolated saponin glycoside at m/z 1445.64 [M + formic-H]- equivalent to C64H104O33 and the putatively found active metabolite at m/z 1283.58 [M + formic-H]- corresponding to scillanoside L-1. A combination of metabolomics and bioactivity-guided approaches resulted in the isolation of a norlanostane-type saponin glycoside with antitrypanosomal activity of 98.9% inhibition at 20 µM.


Assuntos
Liliaceae/química , Metabolômica/métodos , Extratos Vegetais/química , Saponinas/farmacologia , Tripanossomicidas/isolamento & purificação , Glicosídeos , Espectrometria de Massas , Extratos Vegetais/farmacologia , Estruturas Vegetais/química , Saponinas/isolamento & purificação
14.
AMB Express ; 9(1): 12, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30680548

RESUMO

Several approaches have been dedicated to activate the cryptic gene clusters in the genomes of actinomycetes for the targeted discovery of new fascinating biomedical lead structures. In the current study, N-acetylglucosamine was used to maximize the chemical diversity of sponge-derived actinomycete Actinokineospora spheciospongiae sp. nov. HR-ESI-MS was employed for dereplication study and orthogonal partial least square-discriminant analysis was applied to evaluate the HR-ESI-MS data of the different fractions. As a result, two new fridamycins H (1) and I (2), along with three known compounds actinosporin C (3), D (4), and G (5) were isolated from the solid culture of sponge-associated actinomycete Actinokineospora spheciospongiae sp. nov., elicited with N-acetylglucosamine. Characterization of the isolated compounds was pursued using mass spectrometry and NMR spectral data. Fridamycin H (1) exhibited significant growth inhibitory activity towards Trypanosoma brucei strain TC221. These results highlight the potential of elicitation in sponge-associated actinomycetes as an effective strategy for the discovery of new anti-infective natural products.

15.
J Biol Chem ; 294(11): 4215-4232, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30655291

RESUMO

Aggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree (Olea europaea L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein. Here, using αSN aggregation, fibrillation, size-exclusion chromatography-multiangle light scattering (SEC-MALS)-based assays, and toxicity assays, we systematically screened the fruit extracts of 15 different olive varieties to identify compounds that can inhibit αSN aggregation and oligomer toxicity and also have antioxidant activity. Polyphenol composition differed markedly among varieties. The variety with the most effective antioxidant and aggregation activities, Koroneiki, combined strong inhibition of αSN fibril nucleation and elongation with strong disaggregation activity on preformed fibrils and prevented the formation of toxic αSN oligomers. Fractionation of the Koroneiki extract identified oleuropein aglycone, hydroxyl oleuropein aglycone, and oleuropein as key compounds responsible for the differences in inhibition across the extracts. These phenolic compounds inhibited αSN amyloidogenesis by directing αSN monomers into small αSN oligomers with lower toxicity, thereby suppressing the subsequent fibril growth phase. Our results highlight the molecular consequences of differences in the level of effective phenolic compounds in different olive varieties, insights that have implications for long-term human health.


Assuntos
Frutas/química , Iridoides/farmacologia , Olea/química , alfa-Sinucleína/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia em Gel , Relação Dose-Resposta a Droga , Humanos , Glucosídeos Iridoides , Iridoides/química , Iridoides/isolamento & purificação , Luz , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
16.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1106-1107: 71-83, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658264

RESUMO

This study aims to identify bioactive anticancer and anti-trypanosome secondary metabolites from the fermentation culture of Aspergillus flocculus endophyte assisted by modern metabolomics technologies. The endophyte was isolated from the stem of the medicinal plant Markhamia platycalyx and identified using phylogenetics. Principle component analysis was employed to screen for the optimum growth endophyte culturing conditions and revealing that the 30-days rice culture (RC-30d) provided the highest levels of the bioactive agents. To pinpoint for active chemicals in endophyte crude extracts and successive fractions, a new application of molecular interaction network is implemented to correlate the chemical and biological profiles of the anti-trypanosome active fractions to highlight the metabolites mediating for bioactivity prior to purification trials. Multivariate data analysis (MVDA), with the aid of dereplication studies, efficiently annotated the putatively active anticancer molecules. The small-scale RC-30d fungal culture was purified using high-throughput chromatographic techniques to yield compound 1, a novel polyketide molecule though inactive. Whereas, active fractions revealed from the bioactivity guided fractionation of medium scale RC-30d culture were further purified to yield 7 metabolites, 5 of which namely cis-4-hydroxymellein, 5-hydroxymellein, diorcinol, botryoisocoumarin A and mellein, inhibited the growth of chronic myelogenous leukemia cell line K562 at 30 µM. 3-Hydroxymellein and diorcinol exhibited a respective inhibition of 56% and 97% to the sleeping sickness causing parasite Trypanosoma brucei brucei. More interestingly, the anti-trypanosomal activity of A. flocculus extract appeared to be mediated by the synergistic effect of the active steroidal compounds i.e. ergosterol peroxide, ergosterol and campesterol. The isolated structures were elucidated by using 1D, 2D NMR and HR-ESIMS.


Assuntos
Antineoplásicos/isolamento & purificação , Aspergillus/química , Endófitos/química , Tripanossomicidas/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Fermentação , Humanos , Células K562 , Células PC-3 , Metabolismo Secundário , Tripanossomicidas/metabolismo , Tripanossomicidas/farmacologia
17.
J Agric Food Chem ; 66(21): 5346-5351, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29746125

RESUMO

The profiles of polar metabolites were determined in wholemeal flours of grain from the Broadbalk wheat experiment and from plants grown under organic and low-input systems to study the effects of nutrition on composition. The Broadbalk samples showed increased amino acids, acetate, and choline and decreased fructose and succinate with increasing nitrogen fertilization. Samples receiving farm yard manure had similar grain nitrogen to those receiving 96 kg of N/ha but had higher contents of amino acids, sugars, and organic acids. A comparison of the profiles of grain from organic and low-input systems showed only partial separation, with clear effects of climate and agronomy. However, supervised multivariate analysis showed that the low-input samples had higher contents of many amino acids, raffinose, glucose, organic acids, and choline and lower sucrose, fructose, and glycine. Consequently, although differences between organic and conventional grain occur, these cannot be used to confirm sample identity.


Assuntos
Agricultura/métodos , Fertilizantes , Agricultura Orgânica/métodos , Triticum/crescimento & desenvolvimento , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Farinha/análise , Esterco , Metabolômica , Nitrogênio/administração & dosagem , Nitrogênio/análise , Valor Nutritivo , Triticum/química , Reino Unido
18.
Planta Med ; 84(3): 182-190, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28847019

RESUMO

Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora. Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF-κB and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using high-resolution electrospray ionization mass spectrometry directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N-acetylphenylalanine (1: ) and two linear peptide congeners of 1: : dipeptide N-acetylphenylalanyl-L-phenylalanine (2: ) and tripeptide N-acetylphenylalanyl-L-phenylalanyl-L-leucine (3: ).


Assuntos
Ascomicetos/química , Produtos Biológicos/isolamento & purificação , Terminalia/microbiologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Fermentação , Humanos , Células K562 , Metabolômica
19.
Chem Biodivers ; 14(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28672096

RESUMO

Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology that may find applications as pharmaceutical and agrochemical drugs. In this study, a combination of metabolomics and bioactivity-guided approaches were employed to isolate secondary metabolites with cytotoxicity against cancer cells from an endophytic Aspergillus aculeatus. The endophyte was isolated from the Egyptian medicinal plant Terminalia laxiflora and identified using molecular biological methods. Metabolomics and dereplication studies were accomplished by utilizing the MZmine software coupled with the universal Dictionary of Natural Products database. Metabolic profiling, with aid of multivariate data analysis, was performed at different stages of the growth curve to choose the optimized method suitable for up-scaling. The optimized culture method yielded a crude extract abundant with biologically-active secondary metabolites. Crude extracts were fractionated using different high-throughput chromatographic techniques. Purified compounds were identified by HR-ESI-MS, 1D- and 2D-NMR. This study introduced a new method of dereplication utilizing both high-resolution mass spectrometry and NMR spectroscopy. The metabolites were putatively identified by applying a chemotaxonomic filter. We also present a short review on the diverse chemistry of terrestrial endophytic strains of Aspergillus, which has become a part of our dereplication work and this will be of wide interest to those working in this field.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Aspergillus/metabolismo , Bactérias/efeitos dos fármacos , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Terminalia/química , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Metabolômica , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/metabolismo
20.
Methods Mol Biol ; 1055: 227-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23963915

RESUMO

Metabolomic methods can be utilized to screen diverse biological sources of potentially novel and sustainable sources of antibiotics and pharmacologically-active drugs. Dereplication studies by high resolution Fourier transform mass spectrometry coupled to liquid chromatography (LC-HRFTMS) and nuclear magnetic resonance (NMR) spectroscopy can establish the chemical profile of endophytic and/or endozoic microbial extracts and their plant or animal sources. Identifying the compounds of interest at an early stage will aid in the isolation of the bioactive components. Therefore metabolite profiling is important for functional genomics and in the search for new pharmacologically active compounds. Using the tools of metabolomics through the employment of LC-HRFTMS as well as high resolution NMR will be a very efficient approach. Metabolomic profiling has found its application in screening extracts of macroorganisms as well as in the isolation and cultivation of suspected microbial producers of bioactive natural products.Metabolomics is being applied to identify and biotechnologically optimize the production of pharmacologically active secondary metabolites. The links between metabolome evolution during optimization and processing factors can be identified through metabolomics. Information obtained from a metabolomics dataset can efficiently establish cultivation and production processes at a small scale which will be finally scaled up to a fermenter system, while maintaining or enhancing synthesis of the desired compounds. MZmine (BMC Bioinformatics 11:395-399, 2010; http://mzmine.sourceforge.net/download.shtml ) and SIEVE ( http://www.vastscientific.com/resources/index.html ; Rapid Commun Mass Spectrom 22:1912-1918, 2008) softwares are utilized to perform differential analysis of sample populations to find significant expressed features of complex biomarkers between parameter variables. Metabolomes are identified with the aid of existing high resolution MS and NMR records from online or in-house databases like AntiMarin, a merger database of Antibase (Laatsch H. Antibase Version 4.0 - The Natural Compound Identifier. Wiley-VCH Verlag GmbH & Co. KGaA, 2012) for microbial secondary metabolites as well as higher fungi and MarinLit for marine natural products (Blunt J. MarinLit. University of Canterbury, New Zealand, 2012). This is further validated through available reference standards and NMR experiments. Metabolomics has become a powerful tool in systems biology which allows us to gain insights into the potential of natural isolates for synthesis of significant quantities of promising new agents and allows us to manipulate the environment within fermentation systems in a rational manner to select a desired metabolome.


Assuntos
Metabolômica/métodos , Produtos Biológicos/análise , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...