Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 86(7): 81, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805120

RESUMO

The mosquito-borne dengue virus remains a major public health concern in Malaysia. Despite various control efforts and measures introduced by the Malaysian Government to combat dengue, the increasing trend of dengue cases persists and shows no sign of decreasing. Currently, early detection and vector control are the main methods employed to curb dengue outbreaks. In this study, a coupled model consisting of the statistical ARIMAX model and the deterministic SI-SIR model was developed and validated using the weekly reported dengue data from year 2014 to 2019 for Selangor, Malaysia. Previous studies have shown that climate variables, especially temperature, humidity, and precipitation, were able to influence dengue incidence and transmission dynamics through their effect on the vector. In this coupled model, climate is linked to dengue disease through mosquito biting rate, allowing real-time forecast of dengue cases using climate variables, namely temperature, rainfall and humidity. For the period chosen for model validation, the coupled model can forecast 1-2 weeks in advance with an average error of less than 6%, three weeks in advance with an average error of 7.06% and four weeks in advance with an average error of 8.01%. Further model simulation analysis suggests that the coupled model generally provides better forecast than the stand-alone ARIMAX model, especially at the onset of the outbreak. Moreover, the coupled model is more robust in the sense that it can be further adapted for investigating the effectiveness of various dengue mitigation measures subject to the changing climate.


Assuntos
Aedes , Clima , Dengue , Surtos de Doenças , Previsões , Conceitos Matemáticos , Modelos Estatísticos , Mosquitos Vetores , Dengue/epidemiologia , Dengue/transmissão , Malásia/epidemiologia , Humanos , Incidência , Mosquitos Vetores/virologia , Previsões/métodos , Animais , Aedes/virologia , Surtos de Doenças/estatística & dados numéricos , Modelos Epidemiológicos , Simulação por Computador , Temperatura , Chuva , Umidade , Mudança Climática/estatística & dados numéricos , Modelos Biológicos
2.
J Theor Biol ; 532: 110913, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34562459

RESUMO

Internal phosphorus recycling in lakes is an important nutrient source that promotes algal growth. Its persistence impedes the effort to improve water quality and thus poses a challenge to the management of eutrophication in lakes, especially in shallow lakes where the occurrence of internal phosphorus recycling is reportedly more common. This paper aims to provide crucial insights on the effects of internal phosphorus recycling on eutrophication dynamics for effective management of lake eutrophication. For this purpose, a mathematical model for lake eutrophication, comprising two compartments of algae and phosphorus, is first formulated for application to a eutrophic tropical lake named Tasik Harapan in Universiti Sains Malaysia. Numerical bifurcation analysis of the model is then performed to assess the combined influences of internal phosphorus recycling, algal mortality and external phosphorus loading on Tasik Harapan eutrophication dynamics. Specifically, co-dimension one bifurcation analysis of algal mortality rate is carried out by means of XPPAUT for various external phosphorus loading rates. The emergence of limit cycle for a certain range of algal mortality rate could be related to the hydra effect (i.e., algal concentration increases in response to greater algal mortality) and the paradox of enrichment (i.e., destabilization of algae in nutrient rich environment). To trace the locus of co-dimension one bifurcation, co-dimension two bifurcation analysis is performed by means of MatCont. The analysis demonstrated that the inclusion of the internal phosphorus recycling term induces rich and complex dynamics of the model. These dynamics include saddle-node bifurcation, cusp, Bogdanov-Takens bifurcation, Generalized Hopf bifurcation and limit point bifurcation of cycles. The results suggest that high internal phosphorus recycling rate promotes bistability and catastrophic shift in a shallow and tropical lake like Tasik Harapan. Hence, the key to effective management of eutrophication in shallow and tropical lakes is the control of internal phosphorus recycling.


Assuntos
Monitoramento Ambiental , Fósforo , China , Eutrofização , Lagos , Nutrientes , Fósforo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...