Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 32(5): 107996, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755588

RESUMO

Southeast Asia has been the hotbed for the development of drug-resistant malaria parasites, including those with resistance to artemisinin combination therapy. While mutations in the kelch propeller domain (K13 mutations) are associated with artemisinin resistance, a range of evidence suggests that other factors are critical for the establishment and subsequent transmission of resistance in the field. Here, we perform a quantitative analysis of DNA damage and repair in the malaria parasite Plasmodium falciparum and find a strong link between enhanced DNA damage repair and artemisinin resistance. This experimental observation is further supported when variations in seven known DNA repair genes are found in resistant parasites, with six of these mutations being associated with K13 mutations. Our data provide important insights on confounding factors that are important for the establishment and spread of artemisinin resistance and may explain why resistance has not yet arisen in Africa.


Assuntos
Artemisininas/farmacologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , África , Sudeste Asiático , Resistência a Medicamentos/efeitos dos fármacos , Genótipo , Geografia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Fenótipo , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/isolamento & purificação , Domínios Proteicos , Proteínas de Protozoários/genética
2.
Proc Natl Acad Sci U S A ; 112(26): E3421-30, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080406

RESUMO

Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.


Assuntos
Apoptose , Dano ao DNA , Peróxido de Hidrogênio/metabolismo , Alvéolos Pulmonares/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Reparo do DNA , Células Epiteliais/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Alvéolos Pulmonares/citologia , Streptococcus pneumoniae/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...