Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Exp Neurol ; 359: 114161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787888

RESUMO

The precursor form of nerve growth factor (proNGF) is essential to maintain NGF survival signaling. ProNGF is also among endogenous ligands for p75 neurotrophin receptor (p75ntr). Mounting evidence implies that p75ntr signaling contributes to neural damage in ischemic stroke. The present study examines the therapeutic effect of the p75ntr modulator LM11A-31. Adult mice underwent transient distal middle cerebral artery occlusion (t-dMCAO) followed by LM11A-31 treatment (25 mg/kg, i.p., twice daily) either for 72 h post-injury (acute phase) or afterward till two weeks post-stroke (subacute phase). LM11A-31 reduced blood-brain barrier permeability, cerebral tissue injury, and sensorimotor function in the acute phase of stroke. Ischemic brain samples showed repressed proNGF/P75ntr signaling and Caspase 3 activation in LM11A-31 treated mice, where we observed less reactive microglia and IL-1ß production. LM11A-31 (20-80 nM) also mitigated neural injury induced by oxygen-glucose deprivation (OGD) in sandwich co-cultures of primary cortical neurons (PCN) and astrocytes. This concurred with JNK/PARP downregulation and reduced caspase-3 cleavage in the PCNs and was associated with repressed proNGF generation in astrocytes. Further in vitro experiments indicated human proNGF suppresses the pro-inflammatory phenotype in microglial cultures, as determined by a sharp decline in HMGB-1 production and moderate arginase-1 upregulation. Despite significant protection in acute stroke, LM11A-31 treatment did not improve cortical atrophy and sensorimotor function in the subacute phase. Our findings provide preclinical evidence supporting LM11A-31 as a promising therapy for acute stroke injury. Further investigations may elucidate if reduced astrocytic proNGF, an endogenous reservoir of pro-neurotrophins, may restrict the therapeutic window.


Assuntos
Receptor de Fator de Crescimento Neural , Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Receptor de Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/metabolismo , Astrócitos/metabolismo , Receptores de Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
2.
Transl Stroke Res ; 14(2): 211-237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35596116

RESUMO

Clinical evidence affirms physical exercise is effective in preventive and rehabilitation approaches for ischemic stroke. This sustainable efficacy is independent of cardiovascular risk factors and associates substantial reprogramming in circulating extracellular vesicles (EVs). The intricate journey of pluripotent exercise-induced EVs from parental cells to the whole-body and infiltration to cerebrovascular entity offers several mechanisms to reduce stroke incidence and injury or accelerate the subsequent recovery. This review delineates the potential roles of EVs as prospective effectors of exercise. The candidate miRNA and peptide cargo of exercise-induced EVs with both atheroprotective and neuroprotective characteristics are discussed, along with their presumed targets and pathway interactions. The existing literature provides solid ground to hypothesize that the rich vesicles link exercise to stroke prevention and rehabilitation. However, there are several open questions about the exercise stressors which may optimally regulate EVs kinetic and boost brain mitochondrial adaptations. This review represents a novel perspective on achieving brain fitness against stroke through transplantation of multi-potential EVs generated by multi-parental cells, which is exceptionally reachable in an exercising body.


Assuntos
Vesículas Extracelulares , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , AVC Isquêmico/metabolismo , Estudos Prospectivos , Encéfalo/metabolismo , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/metabolismo , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...