Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem C Mater ; 11(24): 8007-8017, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37362025

RESUMO

Exposure to environmental factors is generally expected to cause degradation in perovskite films and solar cells. Herein, we show that films with certain defect profiles can display the opposite effect, healing upon exposure to oxygen under illumination. We tune the iodine content of methylammonium lead triiodide perovskite from understoichiometric to overstoichiometric and expose them to oxygen and light prior to the addition of the top layers of the device, thereby examining the defect dependence of their photooxidative response in the absence of storage-related chemical processes. The contrast between the photovoltaic properties of the cells with different defects is stark. Understoichiometric samples indeed degrade, demonstrating performance at 33% of their untreated counterparts, while stoichiometric samples maintain their performance levels. Surprisingly, overstoichiometric samples, which show low current density and strong reverse hysteresis when untreated, heal to maximum performance levels (the same as untreated, stoichiometric samples) upon the photooxidative treatment. A similar, albeit smaller-scale, effect is observed for triple cation and methylammonium-free compositions, demonstrating the general application of this treatment to state-of-the-art compositions. We examine the reasons behind this response by a suite of characterization techniques, finding that the performance changes coincide with microstructural decay at the crystal surface, reorientation of the bulk crystal structure for the understoichiometric cells, and a decrease in the iodine-to-lead ratio of all films. These results indicate that defect engineering is a powerful tool to manipulate the stability of perovskite solar cells.

2.
Nat Commun ; 12(1): 1878, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767163

RESUMO

Deposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.

3.
ACS Appl Mater Interfaces ; 13(1): 1-17, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372760

RESUMO

At a current value of 25.5%, perovskites have reached some of the highest power conversion efficiencies of all single-junction solar cell devices. Researchers, however, are questioning their readiness for the commercial market, citing reasons of the toxicity of the lead-based active layer and instability. Closer examination of the life cycle of perovskite solar cells reveals that there are more areas than just these which should be addressed in order to bring an environmentally friendly and sustainable technology to global use. In this review, we discuss these issues. Life cycle analyses show that high temperature processes, heavy use of organic solvents, and extensive use of certain materials can have high up and downstream consequences in terms of emissions, human and ecotoxicity. We further bring attention to the toxicity of the perovskites themselves, where the most direct analyses suggest that the lead cannot be considered totally safe, despite its small quantity and that replacements such as tin may be more toxic in certain scenarios. As a way to reduce the negative environmental impact, we highlight ways in which researchers have used encapsulation and recycling to extend the life of the entire unit and its components and to prevent lead leakage. We hope this review directs researchers toward new strategies to introduce a clean solar technology to the world.

4.
Energy Technol (Weinh) ; 8(4): 1900737, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32363134

RESUMO

The wide-bandgap methylammonium lead bromide perovskite is promising for applications in tandem solar cells and light-emitting diodes. Despite its utility, there is a limited understanding of its reproducibility and stability. Herein, the dependence of the properties, performance, and shelf storage of thin films and devices on minute changes to the precursor solution stoichiometry is examined in detail. Although photovoltaic cells based on these solution changes exhibit similar initial performance, shelf storage depends strongly on precursor solution stoichiometry. While all devices exhibit some degree of healing, bromide-deficient films show a remarkable improvement, more than doubling in their photoconversion efficiency. Photoluminescence spectroscopy experiments performed under different atmospheres suggest that this increase is due, in part, to a trap-healing mechanism that occurs upon exposure to the environment. The results highlight the importance of understanding and manipulating defects in lead halide perovskites to produce long-lasting, stable devices.

5.
ACS Nano ; 14(1): 384-393, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31721556

RESUMO

Solution-processed quantum dots (QDs) have a high potential for fabricating low-cost, flexible, and large-scale solar energy harvesting devices. It has recently been demonstrated that hybrid devices employing a single monovalent cation perovskite solution for PbS QD surface passivation exhibit enhanced photovoltaic performance when compared to standard ligand passivation. Herein, we demonstrate that the use of a triple cation Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 perovskite composition for surface passivation of the quantum dots results in highly efficient solar cells, which maintain 96% of their initial performance after 1200 h shelf storage. We confirm perovskite shell formation around the PbS nanocrystals by a range of spectroscopic techniques as well as high-resolution transmission electron microscopy. We find that the triple cation shell results in a favorable energetic alignment to the core of the dot, resulting in reduced recombination due to charge confinement without limiting transport in the active layer. Consequently, photovoltaic devices fabricated via a single-step film deposition reached a maximum AM1.5G power conversion efficiency of 11.3% surpassing most previous reports of PbS solar cells employing perovskite passivation.

6.
ACS Appl Mater Interfaces ; 11(2): 2490-2499, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30516361

RESUMO

In this work, we examine the effect of microstructure on ion-migration-induced photoluminescence (PL) quenching in methylammonium lead iodide perovskite films. Thin films were fabricated by two methods: spin-coating, which results in randomly oriented perovskite grains, and zone-casting, which results in aligned grains. As an external bias is applied to these films, migration of ions causes a quenching of the PL signal in the vicinity of the anode. The evolution of this PL-quenched zone is less uniform in the spin-coated devices than in the zone-cast ones, suggesting that the relative orientation of the crystal grains plays a significant role in the migration of ions within polycrystalline perovskite. We simulate this effect via a simple Ising model of ionic motion across grains in the perovskite thin film. The results of this simulation align closely with the observed experimental results, further solidifying the correlation between crystal grain orientation and the rate of ionic transport.

7.
ACS Omega ; 3(8): 10042-10047, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459132

RESUMO

Perovskite-based solar cells are promising because of their rapidly improving efficiencies but suffer from instability issues. Recently, it has been claimed that one of the key contributors to the instability of perovskite solar cells is ion migration-induced electrode degradation, which can be avoided by incorporating inorganic hole-blocking layers (HBLs) in the device architecture. In this work, we investigate the operational environmental stability of methylammonium lead iodide perovskite solar cells that contain either an inorganic or organic HBL, with only the former effectively blocking ions from migrating to the metal electrode. This is confirmed by X-ray photoemission spectroscopy measured on the electrodes of degraded devices, where only electrodes of devices with an organic HBL show a significant iodine signal. Despite this, we show that when these devices are degraded under realistic operational conditions (i.e., constant illumination in a variety of atmospheric conditions), both types of devices exhibit nearly identical degradation behavior. These results demonstrate that contrary to prior suggestions, ion-induced electrode degradation is not the dominant factor in perovskite environmental instability under operational conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...