Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 147: 105280, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403365

RESUMO

Studies of the evolutionary causes and consequences of variation in circulating glucocorticoids (GCs) have begun to reveal how they are shaped by selection. Yet the extent to which variation in circulating hormones reflects variation in other important regulators of the hypothalamic-pituitary-adrenal (HPA) axis, and whether these relationships vary among populations inhabiting different environments, remain poorly studied. Here, we compare gene expression in the brain of female tree swallows (Tachycineta bicolor) from populations that breed in environments that differ in their unpredictability. We find evidence of inter-population variation in the expression of glucocorticoid and mineralocorticoid receptors in the hypothalamus, with the highest gene expression in a population from an extreme environment, and lower expression in a population from a more consistent environment as well as in birds breeding at an environmentally variable high-altitude site that are part of a population that inhabits a mixture of high and low altitude habitats. Within some populations, variation in circulating GCs predicted differences in gene expression, particularly in the hypothalamus. However, some patterns were present in all populations, whereas others were not. These results are consistent with the idea that some combination of local adaptation and phenotypic plasticity may modify components of the HPA axis affecting stress resilience. Our results also underscore that a comprehensive understanding of the function and evolution of the stress response cannot be gained from measuring circulating hormones alone, and that future studies that apply a more explicitly evolutionary approach to important regulatory traits are likely to provide significant insights.


Assuntos
Glucocorticoides , Andorinhas , Animais , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Encéfalo/metabolismo , Andorinhas/genética , Expressão Gênica , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo
2.
Ecol Evol ; 12(11): e9495, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36381389

RESUMO

Many populations of long-distance migrant shorebirds are declining rapidly. Since the 1970s, the lesser yellowlegs (Tringa flavipes) has experienced a pronounced reduction in abundance of ~63%. The potential causes of the species' decline are complex and interrelated. Understanding the timing of migration, seasonal routes, and important stopover and non-breeding locations used by this species will aid in directing conservation planning to address potential threats. During 2018-2022, we tracked 118 adult lesser yellowlegs using GPS satellite tags deployed on birds from five breeding and two migratory stopover locations spanning the boreal forest of North America from Alaska to Eastern Canada. Our objectives were to identify migratory routes, quantify migratory connectivity, and describe key stopover and non-breeding locations. We also evaluated predictors of southbound migratory departure date and migration distance. Individuals tagged in Alaska and Central Canada followed similar southbound migratory routes, stopping to refuel in the Prairie Pothole Region of North America, whereas birds tagged in Eastern Canada completed multi-day transoceanic flights covering distances of >4000 km across the Atlantic between North and South America. Upon reaching their non-breeding locations, lesser yellowlegs populations overlapped, resulting in weak migratory connectivity. Sex and population origin were significantly associated with the timing of migratory departure from breeding locations, and body mass at the time of GPS-tag deployment was the best predictor of southbound migratory distance. Our findings suggest that lesser yellowlegs travel long distances and traverse numerous political boundaries each year, and breeding location likely has the greatest influence on migratory routes and therefore the threats birds experience during migration. Further, the species' dependence on wetlands in agricultural landscapes during migration and the non-breeding period may make them vulnerable to threats related to agricultural practices, such as pesticide exposure.

3.
Science ; 364(6445)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31196986

RESUMO

Kubelka et al (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


Assuntos
Mudança Climática , Comportamento de Nidação , Animais , Regiões Árticas , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...