Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 462, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263405

RESUMO

The ability to integrate resources and share knowledge across organisations empowers scientists to expedite the scientific discovery process. This is especially crucial in addressing emerging global challenges that require global solutions. In this work, we develop an architecture for distributed self-driving laboratories within The World Avatar project, which seeks to create an all-encompassing digital twin based on a dynamic knowledge graph. We employ ontologies to capture data and material flows in design-make-test-analyse cycles, utilising autonomous agents as executable knowledge components to carry out the experimentation workflow. Data provenance is recorded to ensure its findability, accessibility, interoperability, and reusability. We demonstrate the practical application of our framework by linking two robots in Cambridge and Singapore for a collaborative closed-loop optimisation for a pharmaceutically-relevant aldol condensation reaction in real-time. The knowledge graph autonomously evolves toward the scientist's research goals, with the two robots effectively generating a Pareto front for cost-yield optimisation in three days.

2.
ACS Cent Sci ; 9(5): 957-968, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37252348

RESUMO

Functionalization of C-H bonds is a key challenge in medicinal chemistry, particularly for fragment-based drug discovery (FBDD) where such transformations require execution in the presence of polar functionality necessary for protein binding. Recent work has shown the effectiveness of Bayesian optimization (BO) for the self-optimization of chemical reactions; however, in all previous cases these algorithmic procedures have started with no prior information about the reaction of interest. In this work, we explore the use of multitask Bayesian optimization (MTBO) in several in silico case studies by leveraging reaction data collected from historical optimization campaigns to accelerate the optimization of new reactions. This methodology was then translated to real-world, medicinal chemistry applications in the yield optimization of several pharmaceutical intermediates using an autonomous flow-based reactor platform. The use of the MTBO algorithm was shown to be successful in determining optimal conditions of unseen experimental C-H activation reactions with differing substrates, demonstrating an efficient optimization strategy with large potential cost reductions when compared to industry-standard process optimization techniques. Our findings highlight the effectiveness of the methodology as an enabling tool in medicinal chemistry workflows, representing a step-change in the utilization of data and machine learning with the goal of accelerated reaction optimization.

3.
Chem Rev ; 123(6): 3089-3126, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36820880

RESUMO

From the start of a synthetic chemist's training, experiments are conducted based on recipes from textbooks and manuscripts that achieve clean reaction outcomes, allowing the scientist to develop practical skills and some chemical intuition. This procedure is often kept long into a researcher's career, as new recipes are developed based on similar reaction protocols, and intuition-guided deviations are conducted through learning from failed experiments. However, when attempting to understand chemical systems of interest, it has been shown that model-based, algorithm-based, and miniaturized high-throughput techniques outperform human chemical intuition and achieve reaction optimization in a much more time- and material-efficient manner; this is covered in detail in this paper. As many synthetic chemists are not exposed to these techniques in undergraduate teaching, this leads to a disproportionate number of scientists that wish to optimize their reactions but are unable to use these methodologies or are simply unaware of their existence. This review highlights the basics, and the cutting-edge, of modern chemical reaction optimization as well as its relation to process scale-up and can thereby serve as a reference for inspired scientists for each of these techniques, detailing several of their respective applications.

4.
React Chem Eng ; 6(8): 1404-1411, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34354841

RESUMO

We herein report experimental applications of a novel, automated computational approach to chemical reaction network (CRN) identification. This report shows the first chemical applications of an autonomous tool to identify the kinetic model and parameters of a process, when considering both catalytic species and various integer and non-integer orders in the model's rate laws. This kinetic analysis methodology requires only the input of the species within the chemical system (starting materials, intermediates, products, etc.) and corresponding time-series concentration data to determine the kinetic information of the chemistry of interest. This is performed with minimal human interaction and several case studies were performed to show the wide scope and applicability of this process development tool. The approach described herein can be employed using experimental data from any source and the code for this methodology is also provided open-source.

5.
Chem Commun (Camb) ; 57(40): 4926-4929, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870978

RESUMO

An automated continuous flow reactor system equipped with inline analysis, was developed and applied in the self-optimisation of a nanoparticle catalysed reaction. The system was used to optimise the experimental conditions of a gold nanoparticle catalysed 4-nitrophenol reduction reaction, towards maximum conversion in under 2.5 hours. The data obtained from this optimisation was then used to generate a kinetic model, allowing us to predict the outcome of the reaction under different conditions. By combining continuous flow nanoparticle synthesis with this approach, the development timeline for these emerging catalysts could be significantly accelerated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...