Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 148(15): 3574-3583, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37403759

RESUMO

A line illumination Raman microscope extracts the underlying spatial and spectral information of a sample, typically a few hundred times faster than raster scanning. This makes it possible to measure a wide range of biological samples such as cells and tissues - that only allow modest intensity illumination to prevent potential damage - within feasible time frame. However, a non-uniform intensity distribution of laser line illumination may induce some artifacts in the data and lower the accuracy of machine learning models trained to predict sample class membership. Here, using cancerous and normal human thyroid follicular epithelial cell lines, FTC-133 and Nthy-ori 3-1 lines, whose Raman spectral difference is not so large, we show that the standard pre-processing of spectral analyses widely used for raster scanning microscopes introduced some artifacts. To address this issue, we proposed a detrending scheme based on random forest regression, a nonparametric model-free machine learning algorithm, combined with a position-dependent wavenumber calibration scheme along the illumination line. It was shown that the detrending scheme minimizes the artifactual biases arising from non-uniform laser sources and significantly enhances the differentiability of the sample states, i.e., cancerous or normal epithelial cells, compared to the standard pre-processing scheme.


Assuntos
Iluminação , Microscopia , Humanos , Luz , Calibragem , Algoritmos , Análise Espectral Raman
2.
FEBS Lett ; 593(18): 2535-2544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31254349

RESUMO

Histopathology requires the expertise of specialists to diagnose morphological features of cells and tissues. Raman imaging can provide additional biochemical information to benefit histological disease diagnosis. Using a dietary model of nonalcoholic fatty liver disease in rats, we combine Raman imaging with machine learning and information theory to evaluate cellular-level information in liver tissue samples. After increasing signal-to-noise ratio in the Raman images through superpixel segmentation, we extract biochemically distinct regions within liver tissues, allowing for quantification of characteristic biochemical components such as vitamin A and lipids. Armed with microscopic information about the biochemical composition of the liver tissues, we group tissues having similar composition, providing a descriptor enabling inference of tissue states, contributing valuable information to histological inspection.


Assuntos
Aprendizado de Máquina , Hepatopatia Gordurosa não Alcoólica/patologia , Análise Espectral Raman , Animais , Fígado/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...