Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 606(7912): 204-210, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585232

RESUMO

Chromosome replication is performed by a complex and intricate ensemble of proteins termed the replisome, where the DNA polymerases Polδ and Polε, DNA polymerase α-primase (Polα) and accessory proteins including AND-1, CLASPIN and TIMELESS-TIPIN (respectively known as Ctf4, Mrc1 and Tof1-Csm3 in Saccharomyces cerevisiae) are organized around the CDC45-MCM-GINS (CMG) replicative helicase1-7. Because a functional human replisome has not been reconstituted from purified proteins, how these factors contribute to human DNA replication and whether additional proteins are required for optimal DNA synthesis are poorly understood. Here we report the biochemical reconstitution of human replisomes that perform fast and efficient DNA replication using 11 purified human replication factors made from 43 polypeptides. Polε, but not Polδ, is crucial for optimal leading-strand synthesis. Unexpectedly, Polε-mediated leading-strand replication is highly dependent on the sliding-clamp processivity factor PCNA and the alternative clamp loader complex CTF18-RFC. We show how CLASPIN and TIMELESS-TIPIN contribute to replisome progression and demonstrate that, in contrast to the budding yeast replisome8, AND-1 directly augments leading-strand replication. Moreover, although AND-1 binds to Polα9,10, the interaction is dispensable for lagging-strand replication, indicating that Polα is functionally recruited via an AND-1-independent mechanism for priming in the human replisome. Collectively, our work reveals how the human replisome achieves fast and efficient leading-strand and lagging-strand DNA replication, and provides a powerful system for future studies of the human replisome and its interactions with other DNA metabolic processes.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA , Complexos Multienzimáticos , DNA/biossíntese , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/isolamento & purificação , Humanos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/isolamento & purificação , Fatores de Tempo
2.
Front Med (Lausanne) ; 9: 1070497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816719

RESUMO

Radioligand therapy (RLT) is gaining traction as a safe and effective targeted approach for the treatment of many cancer types, reflected by a substantial and growing commercial market (valued at $7.78 billion in 2021, with a projected value of $13.07 billion by 2030). Beta-emitting RLTs have a long history of clinical success dating back to the approval of Zevalin and Bexxar in the early 2000s, later followed by Lutathera and Pluvicto. Alpha radioligand therapeutics (ARTs) offer the potential for even greater success. Driven by ground-breaking clinical results in early trials, improved isotope availability, and better understanding of isotope and disease characteristics, the global market for alpha emitters was estimated at $672.3 million for the year 2020, with projected growth to $5.2 billion by 2027. New company formations, promising clinical trial data, and progression for many radioligand therapy products, as well as an inflow of investor capital, are contributing to this expanding field. Future growth will be fueled by further efficacy and safety data from ART clinical trials and real-world results, but challenges remain. Radionuclide supply, manufacturing, and distribution are key obstacles for growth of the field. New models of delivery are needed, along with cross-disciplinary training of specialized practitioners, to ensure patient access and avoid challenges faced by early RLT candidates such as Zevalin and Bexxar. Understanding of the history of radiation medicine is critical to inform what may be important to the success of ART-most past projections were inaccurate and it is important to analyze the reasons for this. Practical considerations in how radiation medicine is delivered and administered are important to understand in order to inform future approaches.

3.
EMBO J ; 40(23): e108819, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694004

RESUMO

The human replisome is an elaborate arrangement of molecular machines responsible for accurate chromosome replication. At its heart is the CDC45-MCM-GINS (CMG) helicase, which, in addition to unwinding the parental DNA duplex, arranges many proteins including the leading-strand polymerase Pol ε, together with TIMELESS-TIPIN, CLASPIN and AND-1 that have key and varied roles in maintaining smooth replisome progression. How these proteins are coordinated in the human replisome is poorly understood. We have determined a 3.2 Šcryo-EM structure of a human replisome comprising CMG, Pol ε, TIMELESS-TIPIN, CLASPIN and AND-1 bound to replication fork DNA. The structure permits a detailed understanding of how AND-1, TIMELESS-TIPIN and Pol ε engage CMG, reveals how CLASPIN binds to multiple replisome components and identifies the position of the Pol ε catalytic domain. Furthermore, the intricate network of contacts contributed by MCM subunits and TIMELESS-TIPIN with replication fork DNA suggests a mechanism for strand separation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , DNA Polimerase II/química , DNA Polimerase II/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/genética , Conformação Proteica
4.
Nat Commun ; 12(1): 5545, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545070

RESUMO

The RAD51 recombinase assembles as helical nucleoprotein filaments on single-stranded DNA (ssDNA) and mediates invasion and strand exchange with homologous duplex DNA (dsDNA) during homologous recombination (HR), as well as protection and restart of stalled replication forks. Strand invasion by RAD51-ssDNA complexes depends on ATP binding. However, RAD51 can bind ssDNA in non-productive ADP-bound or nucleotide-free states, and ATP-RAD51-ssDNA complexes hydrolyse ATP over time. Here, we define unappreciated mechanisms by which the RAD51 paralog complex RFS-1/RIP-1 limits the accumulation of RAD-51-ssDNA complexes with unfavorable nucleotide content. We find RAD51 paralogs promote the turnover of ADP-bound RAD-51 from ssDNA, in striking contrast to their ability to stabilize productive ATP-bound RAD-51 nucleoprotein filaments. In addition, RFS-1/RIP-1 inhibits binding of nucleotide-free RAD-51 to ssDNA. We propose that 'nucleotide proofreading' activities of RAD51 paralogs co-operate to ensure the enrichment of active, ATP-bound RAD-51 filaments on ssDNA to promote HR.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Nucleotídeos/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Homologia de Sequência de Aminoácidos , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , DNA de Cadeia Simples/metabolismo , Fluorescência , Interferometria , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Especificidade da Espécie
5.
J Mol Biol ; 431(10): 2040-2049, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894292

RESUMO

Leading-strand polymerase stalling at DNA damage impairs replication fork progression. Using biochemical approaches, we show this arises due to both slower template unwinding following helicase-polymerase uncoupling and establishment of prolonged stalled fork structures. Fork slowing and stalling occur at structurally distinct lesions, are always associated with continued lagging-strand synthesis, are observed when either Pol ε or Pol δ stalls at leading-strand damage, and do not require specific helicase-polymerase coupling factors. Hence, the key trigger for these replisome-intrinsic responses is cessation of leading-strand polymerization, revealing this as a crucial driver of normal replication fork rates. We propose that this helps balance the need for sufficient uncoupling to activate the DNA replication checkpoint with excessive destabilizing single-stranded DNA exposure in eukaryotes.


Assuntos
DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Dano ao DNA , Reparo do DNA , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 70(6): 1067-1080.e12, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29944888

RESUMO

The replisome must overcome DNA damage to ensure complete chromosome replication. Here, we describe the earliest events in this process by reconstituting collisions between a eukaryotic replisome, assembled with purified proteins, and DNA damage. Lagging-strand lesions are bypassed without delay, leaving daughter-strand gaps roughly the size of an Okazaki fragment. In contrast, leading-strand polymerase stalling significantly impacts replication fork progression. We reveal that the core replisome itself can bypass leading-strand damage by re-priming synthesis beyond it. Surprisingly, this restart activity is rare, mainly due to inefficient leading-strand re-priming, rather than single-stranded DNA exposure or primer extension. We find several unanticipated mechanistic distinctions between leading- and lagging-strand priming that we propose control the replisome's initial response to DNA damage. Notably, leading-strand restart was specifically stimulated by RPA depletion, which can occur under conditions of replication stress. Our results have implications for pathway choice at stalled forks and priming at DNA replication origins.


Assuntos
Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , DNA/metabolismo , Dano ao DNA/fisiologia , DNA Primase/metabolismo , Reparo do DNA/genética , DNA de Cadeia Simples/metabolismo , Eucariotos/genética , Células Eucarióticas/metabolismo , Origem de Replicação/genética , Origem de Replicação/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Cell ; 64(5): 926-939, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867009

RESUMO

Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently discovered that a RAD51 paralog complex from C. elegans, RFS-1/RIP-1, functions predominantly downstream of filament assembly by binding and remodeling RAD-51-ssDNA filaments to a conformation more proficient for strand exchange. Here, we demonstrate that RFS-1/RIP-1 acts by shutting down RAD-51 dissociation from ssDNA. Using stopped-flow experiments, we show that RFS-1/RIP-1 confers this dramatic stabilization by capping the 5' end of RAD-51-ssDNA filaments. Filament end capping propagates a stabilizing effect with a 5'→3' polarity approximately 40 nucleotides along individual filaments. Finally, we discover that filament capping and stabilization are dependent on nucleotide binding, but not hydrolysis by RFS-1/RIP-1. These data define the mechanism of RAD51 filament remodeling by RAD51 paralogs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Filamentos Intermediários/metabolismo , Rad51 Recombinase/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA de Cadeia Simples/genética , Filamentos Intermediários/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Rad51 Recombinase/genética , Reparo de DNA por Recombinação
8.
Cell ; 162(2): 271-286, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186187

RESUMO

Repair of DNA double strand breaks by homologous recombination (HR) is initiated by Rad51 filament nucleation on single-stranded DNA (ssDNA), which catalyzes strand exchange with homologous duplex DNA. BRCA2 and the Rad51 paralogs are tumor suppressors and critical mediators of Rad51. To gain insight into Rad51 paralog function, we investigated a heterodimeric Rad51 paralog complex, RFS-1/RIP-1, and uncovered the molecular basis by which Rad51 paralogs promote HR. Unlike BRCA2, which nucleates RAD-51-ssDNA filaments, RFS-1/RIP-1 binds and remodels pre-synaptic filaments to a stabilized, "open," and flexible conformation, in which the ssDNA is more accessible to nuclease digestion and RAD-51 dissociation rate is reduced. Walker box mutations in RFS-1, which abolish filament remodeling, fail to stimulate RAD-51 strand exchange activity, demonstrating that remodeling is essential for RFS-1/RIP-1 function. We propose that Rad51 paralogs stimulate HR by remodeling the Rad51 filament, priming it for strand exchange with the template duplex.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Rad51 Recombinase/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Mol Cell ; 47(4): 497-510, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22920291

RESUMO

DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. To preserve genome integrity, organisms have evolved several DSB repair mechanisms, of which nonhomologous end-joining (NHEJ) and homologous recombination (HR) represent the two most prominent. It has recently become apparent that multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts. Such regulation is crucial, as failure to properly execute DSB repair is known to accelerate tumorigenesis and is associated with several human genetic syndromes. Here, we review recent insights into the mechanisms that influence the choice between competing DSB repair pathways, how this is regulated during the cell cycle, and how imbalances in this equilibrium result in genome instability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Instabilidade Genômica , Recombinação Genética , Animais , Ciclo Celular/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...