Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 262(1): 81-8, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16256583

RESUMO

The influence of aluminum concentration on the structural properties and rheological behavior of aqueous suspensions of aluminum-doped titania pigment from the chloride process was investigated. The variation in rheological properties correlates with the change in the pigment surface properties, determined from electrophoresis measurements and atomic surface concentrations. Pigment suspensions exhibited a maximum yield stress and viscosity at or near the isoelectric point (iep). The pH of the maximum yield value of the pigment suspension increases with increasing aluminum hydroxyl group density at the particle surface. For pigments with a high aluminum surface concentration, at pH values where the magnitude of the zeta potential was high, a low-viscosity, dispersed suspension was obtained. The pigment with the lowest aluminum concentration, however, retained high yield stresses over a large pH range even when the zeta potential was of considerable magnitude. Pigment particle interactions are chiefly dictated by van der Waals forces and electrostatic repulsive forces, likely to be influenced by heteroaggregation. The aggregate strength would therefore depend upon the proportion and distribution of aluminum and titanium surface groups of the heterogeneous pigment, which will influence both the Hamaker constant and the degree of heteroaggregation. Overall, very small additions to the total aluminum concentration translate to significant aluminum surface concentration disparities and subsequently to large particle interaction differences.


Assuntos
Alumínio/química , Reologia , Titânio/química , Eletroquímica , Espectrometria de Massas , Microscopia Eletrônica de Transmissão
2.
J Colloid Interface Sci ; 250(1): 28-36, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16290631

RESUMO

The adsorption kinetics of anionic polyacrylamide flocculant onto kaolinite clay are examined as a function of flocculant dosage and pH. Special attention has been given to the flocculation effect during the adsorption process and the resulting inhibition of further adsorption. At pH 8.5 the adsorption capacity of anionic polyacrylamide on kaolinite is low while at pH 4.5, the adsorption capacity increases. Flocculant adsorption has been shown to be related to the amount of available surface area, pH, flocculant dosage, and the resulting floc strength, which controls the rate of new surface area exposure and hence the continuation of further adsorption. At both pH 4.5 and pH 8.5, complete adsorption is achieved at low flocculant dosages and adsorption equilibrium is achieved at high flocculant dosages after 1 day. In contrast, at intermediate flocculant dosages adsorption equilibrium is not reached over a 7-day period, due to a continuously increasing surface area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA