Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861359

RESUMO

The NCI60 human tumor cell line screen has been in operation as a service to the cancer research community for over 30 years. The screen operated with 96-well plates, a 2-day exposure period to test agents, and, following cell fixation, a visible absorbance endpoint by the protein-staining dye sulforhodamine B. Here, we describe the next phase of this important cancer research tool, the HTS384 NCI60 screen. While the cell lines remain the same, the updated screen is performed with 384-well plates, a 3-day exposure period to test agents, and a luminescent endpoint to measure cell viability based upon cellular ATP content. In this study, a library of 1003 FDA-approved and investigational small molecule anticancer agents was screened by the two NCI60 assays. The datasets were compared with a focus on targeted agents with at least six representatives in the library. For many agents, including inhibitors of EGFR, BRAF, MEK, ERK, and PI3K, the patterns of GI50 values were very similar between the screens with strong correlations between those patterns within the dataset from each screen. However, for some groups of targeted agents, including mTOR, BET bromodomain, and NAMPRTase inhibitors, there were limited or no correlations between the two datasets, although the patterns of GI50 values and correlations between those patterns within each dataset were apparent. Beginning in January 2024, the HTS384 NCI60 screen became the free screening service of the National Cancer Institute to facilitate drug discovery by the cancer research community.

2.
Genes Chromosomes Cancer ; 62(8): 441-448, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36695636

RESUMO

Cytogenetic analysis provides important information on the genetic mechanisms of cancer. The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (Mitelman DB) is the largest catalog of acquired chromosome aberrations, presently comprising >70 000 cases across multiple cancer types. Although this resource has enabled the identification of chromosome abnormalities leading to specific cancers and cancer mechanisms, a large-scale, systematic analysis of these aberrations and their downstream implications has been difficult due to the lack of a standard, automated mapping from aberrations to genomic coordinates. We previously introduced CytoConverter as a tool that automates such conversions. CytoConverter has now been updated with improved interpretation of karyotypes and has been integrated with the Mitelman DB, providing a comprehensive mapping of the 70 000+ cases to genomic coordinates, as well as visualization of the frequencies of chromosomal gains and losses. Importantly, all CytoConverter-generated genomic coordinates are publicly available in Google BigQuery, a cloud-based data warehouse, facilitating data exploration and integration with other datasets hosted by the Institute for Systems Biology Cancer Gateway in the Cloud (ISB-CGC) Resource. We demonstrate the use of BigQuery for integrative analysis of Mitelman DB with other cancer datasets, including a comparison of the frequency of imbalances identified in Mitelman DB cases with those found in The Cancer Genome Atlas (TCGA) copy number datasets. This solution provides opportunities to leverage the power of cloud computing for low-cost, scalable, and integrated analysis of chromosome aberrations and gene fusions in cancer.


Assuntos
Computação em Nuvem , Neoplasias , Humanos , Aberrações Cromossômicas , Cariotipagem , Neoplasias/genética , Fusão Gênica
3.
Front Microbiol ; 8: 1020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659875

RESUMO

The principles governing acquisition and interspecies exchange of nutrients in microbial communities and how those exchanges impact community productivity are poorly understood. Here, we examine energy and macronutrient acquisition in unicyanobacterial consortia for which species-resolved genome information exists for all members, allowing us to use multi-omic approaches to predict species' abilities to acquire resources and examine expression of resource-acquisition genes during succession. Metabolic reconstruction indicated that a majority of heterotrophic community members lacked the genes required to directly acquire the inorganic nutrients provided in culture medium, suggesting high metabolic interdependency. The sole primary producer in consortium UCC-O, cyanobacterium Phormidium sp. OSCR, displayed declining expression of energy harvest, carbon fixation, and nitrate and sulfate reduction proteins but sharply increasing phosphate transporter expression over 28 days. Most heterotrophic members likewise exhibited signs of phosphorus starvation during succession. Though similar in their responses to phosphorus limitation, heterotrophs displayed species-specific expression of nitrogen acquisition genes. These results suggest niche partitioning around nitrogen sources may structure the community when organisms directly compete for limited phosphate. Such niche complementarity around nitrogen sources may increase community diversity and productivity in phosphate-limited phototrophic communities.

4.
J Cheminform ; 9: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303165

RESUMO

BACKGROUND: Isotopic labeling is an analytic technique that is used to track the movement of isotopes through reaction networks. In general, the applicability of isotopic labeling techniques is limited to the investigation of reaction networks that consider homonuclear moieties, whose atoms are of one tracer element with two isotopes, distinguished by the presence of one additional neutron. RESULTS: This article presents a reformulation of the modeling framework for isotopic labeling, generalized to arbitrarily large, heteronuclear moieties, arbitrary numbers of isotopic tracer elements, and arbitrary numbers of isotopes per element, distinguished by arbitrary numbers of additional neutrons. CONCLUSIONS: With this work, it is now possible to simulate the isotopic labeling states of metabolites in completely arbitrary biochemical reaction networks.

5.
Front Microbiol ; 7: 1819, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933038

RESUMO

Understanding gene function and regulation is essential for the interpretation, prediction, and ultimate design of cell responses to changes in the environment. An important step toward meeting the challenge of understanding gene function and regulation is the identification of sets of genes that are always co-expressed. These gene sets, Atomic Regulons (ARs), represent fundamental units of function within a cell and could be used to associate genes of unknown function with cellular processes and to enable rational genetic engineering of cellular systems. Here, we describe an approach for inferring ARs that leverages large-scale expression data sets, gene context, and functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene expression experiments and compared our results with gene clusters produced by two prevalent data-driven methods: Hierarchical clustering and k-means clustering. We compared ARs and purely data-driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB, showing that ARs are more consistent with gold standard regulons than are data-driven gene clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of gene interactions predicted by Context Likelihood of Relatedness (CLR) analysis, finding that the ARs show better agreement with CLR predicted interactions. We determined the impact of increasing amounts of expression data on AR construction and find that while more data improve ARs, it is not necessary to use the full set of gene expression experiments available for E. coli to produce high quality ARs. In order to explore the conservation of co-regulated gene sets across different organisms, we computed ARs for Shewanella oneidensis, Pseudomonas aeruginosa, Thermus thermophilus, and Staphylococcus aureus, each of which represents increasing degrees of phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed that the consistency of AR gene membership correlates with phylogenetic distance, but there is clear variability in the regulatory networks of closely related organisms. As large scale expression data sets become increasingly common for model and non-model organisms, comparative analyses of atomic regulons will provide valuable insights into fundamental regulatory modules used across the bacterial domain.

6.
ACS Nano ; 10(11): 10173-10185, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27788331

RESUMO

The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells "overloaded" while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.


Assuntos
Nanopartículas , Pontos Quânticos , RNA/química , Linhagem Celular , Expressão Gênica , Humanos
7.
Radiat Res ; 186(5): 531-538, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27802111

RESUMO

In this study we utilized a systems biology approach to identify dose- (0.1, 2.0 and 10 Gy) and time- (3 and 8 h) dependent responses to acute ionizing radiation exposure in a complex tissue, reconstituted human skin. The low dose used here (0.1 Gy) falls within the range of certain medical diagnostic procedures. Of the two higher doses used, 2.0 Gy is typically administered for radiotherapy, while 10 Gy is lethal. Because exposure to any of these doses is possible after an intentional or accidental radiation events, biomarkers are needed to rapidly and accurately triage potentially exposed individuals. Here, tissue samples were acutely exposed to X-ray-generated low-linear-energy transfer (LET) ionizing radiation, and direct RNA sequencing (RNA-seq) was used to quantify altered transcripts. The time points used for this study aid in assessing early responses to exposure, when key signaling pathways and biomarkers can be identified, which precede and regulate later phenotypic alterations that occur at high doses, including cell death. We determined that a total of 1,701 genes expressed were significantly affected by high-dose radiation, with the majority of genes affected at 10 Gy. Expression levels of a group of 29 genes, including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA and AEN, were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at both time points. A much larger group of upregulated genes, including those involved in inflammatory responses, was significantly altered only after 10 Gy irradiation. At high doses, downregulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a few genes were significantly affected by 0.1 Gy irradiation, using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to high-dose irradiated groups. Differential regulation of PLK1 signaling at low- and high-dose irradiation was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of ionizing radiation in this model system. They also highlight potential biomarkers for radiation exposure that may precede the development of overt physiological symptoms in exposed individuals.


Assuntos
Perfilação da Expressão Gênica , Transferência Linear de Energia , Pele/metabolismo , Pele/efeitos da radiação , Biomarcadores/metabolismo , Relação Dose-Resposta à Radiação , Humanos , Fatores de Tempo , Raios X/efeitos adversos
8.
Nucleic Acids Res ; 44(18): 8810-8825, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27568004

RESUMO

Cyanobacterial regulation of gene expression must contend with a genome organization that lacks apparent functional context, as the majority of cellular processes and metabolic pathways are encoded by genes found at disparate locations across the genome and relatively few transcription factors exist. In this study, global transcript abundance data from the model cyanobacterium Synechococcus sp. PCC 7002 grown under 42 different conditions was analyzed using Context-Likelihood of Relatedness (CLR). The resulting network, organized into 11 modules, provided insight into transcriptional network topology as well as grouping genes by function and linking their response to specific environmental variables. When used in conjunction with genome sequences, the network allowed identification and expansion of novel potential targets of both DNA binding proteins and sRNA regulators. These results offer a new perspective into the multi-level regulation that governs cellular adaptations of the fast-growing physiologically robust cyanobacterium Synechococcus sp. PCC 7002 to changing environmental variables. It also provides a methodological high-throughput approach to studying multi-scale regulatory mechanisms that operate in cyanobacteria. Finally, it provides valuable context for integrating systems-level data to enhance gene grouping based on annotated function, especially in organisms where traditional context analyses cannot be implemented due to lack of operon-based functional organization.


Assuntos
Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Synechococcus/genética , Transcriptoma , Sítios de Ligação , Análise por Conglomerados , Perfilação da Expressão Gênica , Genoma Bacteriano , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Ligação Proteica , RNA não Traduzido , Synechococcus/metabolismo , Fatores de Transcrição/metabolismo
9.
J Cell Physiol ; 231(11): 2339-45, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27186840

RESUMO

Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources. J. Cell. Physiol. 231: 2339-2345, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Bactérias/metabolismo , Redes e Vias Metabólicas , Consórcios Microbianos , Modelos Biológicos , Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Consórcios Microbianos/genética
10.
Front Microbiol ; 7: 275, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047450

RESUMO

We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same "ON" and "OFF" gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental conditions, gaining insights into novel biology.

11.
Gene ; 586(1): 77-86, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27050105

RESUMO

Microarray data have been a valuable resource for identifying transcriptional regulatory relationships among genes. As an example, brain region-specific transcriptional regulatory events have the potential of providing etiological insights into Alzheimer Disease (AD). However, there is often a paucity of suitable brain-region specific expression data obtained via microarrays or other high throughput means. The Allen Brain Atlas in situ hybridization (ISH) data sets (Jones et al., 2009) represent a potentially valuable alternative source of high-throughput brain region-specific gene expression data for such purposes. In this study, Allen Brain Atlas mouse ISH data in the hippocampal fields were extracted, focusing on 508 genes relevant to neurodegeneration. Transcriptional regulatory networks were learned using three high-performing network inference algorithms. Only 17% of regulatory edges from a network reverse-engineered based on brain region-specific ISH data were also found in a network constructed upon gene expression correlations in mouse whole brain microarrays, thus showing the specificity of gene expression within brain sub-regions. Furthermore, the ISH data-based networks were used to identify instructive transcriptional regulatory relationships. Ncor2, Sp3 and Usf2 form a unique three-party regulatory motif, potentially affecting memory formation pathways. Nfe2l1, Egr1 and Usf2 emerge among regulators of genes involved in AD (e.g. Dhcr24, Aplp2, Tia1, Pdrx1, Vdac1, and Syn2). Further, Nfe2l1, Egr1 and Usf2 are sensitive to dietary factors and could be among links between dietary influences and genes in the AD etiology. Thus, this approach of harnessing brain region-specific ISH data represents a rare opportunity for gleaning unique etiological insights for diseases such as AD.


Assuntos
Doença de Alzheimer/genética , Redes Reguladoras de Genes , Hipocampo/metabolismo , Hibridização In Situ , Animais , Feminino , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Fatores de Transcrição/metabolismo
12.
Curr Biol ; 25(6): 690-701, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25702576

RESUMO

BACKGROUND: Archaea represent a significant fraction of Earth's biodiversity, yet they remain much less well understood than Bacteria. Gene surveys, a few metagenomic studies, and some single-cell sequencing projects have revealed numerous little-studied archaeal phyla. Certain lineages appear to branch deeply and may be part of a major phylum radiation. The structure of this radiation and the physiology of the organisms remain almost unknown. RESULTS: We used genome-resolved metagenomic analyses to investigate the diversity, genomes sizes, metabolic capacities, and potential roles of Archaea in terrestrial subsurface biogeochemical cycles. We sequenced DNA from complex sediment and planktonic consortia from an aquifer adjacent to the Colorado River (USA) and reconstructed the first complete genomes for Archaea using cultivation-independent methods. To provide taxonomic context, we analyzed an additional 151 newly sampled archaeal sequences. We resolved two new phyla within a major, apparently deep-branching group of phyla (a superphylum). The organisms have small genomes, and metabolic predictions indicate that their primary contributions to Earth's biogeochemical cycles involve carbon and hydrogen metabolism, probably associated with symbiotic and/or fermentation-based lifestyles. CONCLUSIONS: The results dramatically expand genomic sampling of the domain Archaea and clarify taxonomic designations within a major superphylum. This study, in combination with recently published work on bacterial phyla lacking cultivated representatives, reveals a fascinating phenomenon of major radiations of organisms with small genomes, novel proteome composition, and strong interdependence in both domains.


Assuntos
Archaea/genética , Archaea/metabolismo , Ciclo do Carbono/genética , Genoma Arqueal , Anaerobiose/genética , Archaea/classificação , Biodiversidade , Metagenômica , Modelos Biológicos , Modelos Genéticos , Filogenia
13.
PLoS One ; 9(11): e111297, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393307

RESUMO

Using high through-put RNA sequencing, we assayed the transcriptomes of three different strains of Toxoplasma gondii representing three common genotypes under both in vitro tachyzoite and in vitro bradyzoite-inducing alkaline stress culture conditions. Strikingly, the differences in transcriptional profiles between the strains, RH, PLK, and CTG, is much greater than differences between tachyzoites and alkaline stressed in vitro bradyzoites. With an FDR of 10%, we identified 241 genes differentially expressed between CTG tachyzoites and in vitro bradyzoites, including 5 putative AP2 transcription factors. We also observed a close association between cell cycle regulated genes and differentiation. By Gene Set Enrichment Analysis (GSEA), there are a number of KEGG pathways associated with the in vitro bradyzoite transcriptomes of PLK and CTG, including pyrimidine metabolism and DNA replication. These functions are likely associated with cell-cycle arrest. When comparing mRNA levels between strains, we identified 1,526 genes that were differentially expressed regardless of culture-condition as well as 846 differentially expressed only in bradyzoites and 542 differentially expressed only in tachyzoites between at least two strains. Using GSEA, we identified that ribosomal proteins were expressed at significantly higher levels in the CTG strain than in either the RH or PLK strains. This association holds true regardless of life cycle stage.


Assuntos
Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Fator de Transcrição AP-2/genética , Transcriptoma/genética , Sequência de Bases , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Concentração de Íons de Hidrogênio , RNA Mensageiro/genética , Análise de Sequência de DNA , Toxoplasma/classificação , Toxoplasma/crescimento & desenvolvimento
14.
J Bacteriol ; 196(11): 2053-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24659771

RESUMO

The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , DNA Bacteriano/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Ligação Proteica , Transporte Proteico , RNA Bacteriano/genética , Transcriptoma
15.
Integr Biol (Camb) ; 5(11): 1393-406, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24081429

RESUMO

To understand how cell physiological state affects mRNA translation, we used Shewanella oneidensis MR-1 grown under steady state conditions at either 20% or 8.5% O2. Using a combination of quantitative proteomics and RNA-Seq, we generated high-confidence data on >1000 mRNA and protein pairs. By using a steady state model, we found that differences in protein-mRNA ratios were primarily due to differences in the translational efficiency of specific genes. When oxygen levels were lowered, 28% of the proteins showed at least a 2-fold change in expression. Transcription levels were sp. significantly altered for 26% of the protein changes; translational efficiency was significantly altered for 46% and a combination of both was responsible for the remaining 28%. Changes in translational efficiency were significantly correlated with the codon usage pattern of the genes and measurable tRNA pools changed in response to altered O2 levels. Our results suggest that changes in the translational efficiency of proteins, in part due to altered tRNA pools, is a major determinant of regulated alterations in protein expression levels in bacteria.


Assuntos
Fenômenos Fisiológicos Bacterianos , Shewanella/genética , Shewanella/metabolismo , Proteínas de Bactérias/metabolismo , Códon , Meio Ambiente , Escherichia coli/metabolismo , Espectrometria de Massas , Oxigênio/metabolismo , Biossíntese de Proteínas , Proteoma , Proteômica , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Análise de Regressão , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Fatores de Tempo , Transcrição Gênica , Transcriptoma
16.
Front Microbiol ; 4: 280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24065962

RESUMO

Lignocellulosic biofuels are promising as sustainable alternative fuels, but lignin inhibits access of enzymes to cellulose, and by-products of lignin degradation can be toxic to cells. The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by tropical soil bacteria make these organisms useful templates for improving biofuel production. The facultative anaerobe Enterobacter lignolyticus SCF1 was initially cultivated from Cloud Forest soils in the Luquillo Experimental Forest in Puerto Rico, based on anaerobic growth on lignin as sole carbon source. The source of the isolate was tropical forest soils that decompose litter rapidly with low and fluctuating redox potentials, where bacteria using oxygen-independent enzymes likely play an important role in decomposition. We have used transcriptomics and proteomics to examine the observed increased growth of SCF1 grown on media amended with lignin compared to unamended growth. Proteomics suggested accelerated xylose uptake and metabolism under lignin-amended growth, with up-regulation of proteins involved in lignin degradation via the 4-hydroxyphenylacetate degradation pathway, catalase/peroxidase enzymes, and the glutathione biosynthesis and glutathione S-transferase (GST) proteins. We also observed increased production of NADH-quinone oxidoreductase, other electron transport chain proteins, and ATP synthase and ATP-binding cassette (ABC) transporters. This suggested the use of lignin as terminal electron acceptor. We detected significant lignin degradation over time by absorbance, and also used metabolomics to demonstrate moderately significant decreased xylose concentrations as well as increased metabolic products acetate and formate in stationary phase in lignin-amended compared to unamended growth conditions. Our data show the advantages of a multi-omics approach toward providing insights as to how lignin may be used in nature by microorganisms coping with poor carbon availability.

17.
PLoS One ; 8(6): e66104, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840410

RESUMO

The isoprenoid pathway converts pyruvate to isoprene and related isoprenoid compounds in plants and some bacteria. Currently, this pathway is of great interest because of the critical role that isoprenoids play in basic cellular processes, as well as the industrial value of metabolites such as isoprene. Although the regulation of several pathway genes has been described, there is a paucity of information regarding system level regulation and control of the pathway. To address these limitations, we examined Bacillus subtilis grown under multiple conditions and determined the relationship between altered isoprene production and gene expression patterns. We found that with respect to the amount of isoprene produced, terpenoid genes fall into two distinct subsets with opposing correlations. The group whose expression levels positively correlated with isoprene production included dxs, which is responsible for the commitment step in the pathway, ispD, and two genes that participate in the mevalonate pathway, yhfS and pksG. The subset of terpenoid genes that inversely correlated with isoprene production included ispH, ispF, hepS, uppS, ispE, and dxr. A genome-wide partial least squares regression model was created to identify other genes or pathways that contribute to isoprene production. These analyses showed that a subset of 213 regulated genes was sufficient to create a predictive model of isoprene production under different conditions and showed correlations at the transcriptional level. We conclude that gene expression levels alone are sufficiently informative about the metabolic state of a cell that produces increased isoprene and can be used to build a model that accurately predicts production of this secondary metabolite across many simulated environmental conditions.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Butadienos/metabolismo , Perfilação da Expressão Gênica/métodos , Hemiterpenos/metabolismo , Pentanos/metabolismo , Análise de Sequência de RNA/métodos , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Análise dos Mínimos Quadrados , Terpenos/metabolismo
18.
PLoS Pathog ; 9(12): e1003823, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385904

RESUMO

Toxoplasma gondii infects up to one third of the world's population. A key to the success of T. gondii as a parasite is its ability to persist for the life of its host as bradyzoites within tissue cysts. The glycosylated cyst wall is the key structural feature that facilitates persistence and oral transmission of this parasite. Because most of the antibodies and reagents that recognize the cyst wall recognize carbohydrates, identification of the components of the cyst wall has been technically challenging. We have identified CST1 (TGME49_064660) as a 250 kDa SRS (SAG1 related sequence) domain protein with a large mucin-like domain. CST1 is responsible for the Dolichos biflorus Agglutinin (DBA) lectin binding characteristic of T. gondii cysts. Deletion of CST1 results in reduced cyst number and a fragile brain cyst phenotype characterized by a thinning and disruption of the underlying region of the cyst wall. These defects are reversed by complementation of CST1. Additional complementation experiments demonstrate that the CST1-mucin domain is necessary for the formation of a normal cyst wall structure, the ability of the cyst to resist mechanical stress, and binding of DBA to the cyst wall. RNA-seq transcriptome analysis demonstrated dysregulation of bradyzoite genes within the various cst1 mutants. These results indicate that CST1 functions as a key structural component that confers essential sturdiness to the T. gondii tissue cyst critical for persistence of bradyzoite forms.


Assuntos
Cistos/genética , Proteínas de Protozoários/fisiologia , Esporos de Protozoários/genética , Toxoplasma , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Células Cultivadas , Cistos/metabolismo , Humanos , Evasão da Resposta Imune/genética , Estágios do Ciclo de Vida/genética , Permeabilidade , Esporos de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
19.
Gene ; 491(2): 224-31, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22001548

RESUMO

As an activator of adenylate cyclase, the neuropeptide Pituitary Adenylate Cyclase Activating Peptide (PACAP) impacts levels of cyclic AMP, a key second messenger available in brain cells. PACAP is involved in certain adult behaviors. To elucidate PACAP interactions, a compendium of microarrays representing mRNA expression in the adult mouse whole brain was pooled from the Phenogen database for analysis. A regulatory network was computed based on mutual information between gene pairs using gene expression data across the compendium. Clusters among genes directly linked to PACAP, and probable interactions between corresponding proteins were computed. Database "experts" affirmed some of the inferred relationships. The findings suggest ADCY7 is probably the adenylate cyclase isoform most relevant to PACAP's action. They also support intervening roles for kinases including GSK3B, PI 3-kinase, SGK3 and AMPK. Other high-confidence interactions are hypothesized for future testing. This new information has implications for certain behavioral and other disorders.


Assuntos
Encéfalo/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Mapas de Interação de Proteínas , Adenilil Ciclases/metabolismo , Algoritmos , Animais , Redes Reguladoras de Genes , Transtornos Mentais/genética , Camundongos , Análise em Microsséries , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais
20.
Int J Comput Biol Drug Des ; 4(1): 56-82, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21330694

RESUMO

Increasingly, reverse engineering methods have been employed to infer transcriptional regulatory networks from gene expression data. Enrichment with independent evidence from sources such as the biomedical literature and the Gene Ontology (GO) is desirable to corroborate, annotate and expand these networks as well as manually constructed networks. In this paper, we explore a novel approach for computer-assisted enrichment of regulatory networks. GO-based gene similarity is first tuned to an initial network augmented with gene links mined from PubMed and then used to drive network construction using a bootstrapping algorithm. We describe two applications of this approach and discuss its added value in terms of corroboration, annotation and expansion of manually constructed and reversed engineered networks.


Assuntos
Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Redes Reguladoras de Genes , Mineração de Dados , Bases de Dados Genéticas , Escherichia coli , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Genes Bacterianos/fisiologia , Modelos Genéticos , PubMed
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...