Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645793

RESUMO

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the spatiotemporal arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find a close link between chromatin mobility and transcriptional status: active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

2.
bioRxiv ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162887

RESUMO

The spatiotemporal configuration of genes with distal regulatory elements, and the impact of chromatin mobility on transcription, remain unclear. Loop extrusion is an attractive model for bringing genetic elements together, but how this functionally interacts with transcription is also largely unknown. We combine live tracking of genomic loci and nascent transcripts with molecular dynamics simulations to assess the 4D arrangement of the Sox2 gene and its enhancer, in response to a battery of perturbations. We find that alterations in chromatin mobility, not promoter-enhancer distance, is more informative about transcriptional status. Active elements display more constrained mobility, consistent with confinement within specialized nuclear sites, and alterations in enhancer mobility distinguish poised from transcribing alleles. Strikingly, we find that whereas loop extrusion and transcription factor-mediated clustering contribute to promoter-enhancer proximity, they have antagonistic effects on chromatin dynamics. This provides an experimental framework for the underappreciated role of chromatin dynamics in genome regulation.

3.
Genes Dev ; 36(11-12): 699-717, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710138

RESUMO

How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.


Assuntos
Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Fatores de Transcrição SOXB1/genética , Animais , Cromatina , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Fatores de Transcrição/metabolismo
4.
Genome ; 64(4): 426-448, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32961076

RESUMO

Enhancers are cis-regulatory sequences located distally to target genes. These sequences consolidate developmental and environmental cues to coordinate gene expression in a tissue-specific manner. Enhancer function and tissue specificity depend on the expressed set of transcription factors, which recognize binding sites and recruit cofactors that regulate local chromatin organization and gene transcription. Unlike other genomic elements, enhancers are challenging to identify because they function independently of orientation, are often distant from their promoters, have poorly defined boundaries, and display no reading frame. In addition, there are no defined genetic or epigenetic features that are unambiguously associated with enhancer activity. Over recent years there have been developments in both empirical assays and computational methods for enhancer prediction. We review genome-wide tools, CRISPR advancements, and high-throughput screening approaches that have improved our ability to both observe and manipulate enhancers in vitro at the level of primary genetic sequences, chromatin states, and spatial interactions. We also highlight contemporary animal models and their importance to enhancer validation. Together, these experimental systems and techniques complement one another and broaden our understanding of enhancer function in development, evolution, and disease.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Elementos Facilitadores Genéticos , Expressão Gênica , Animais , Sítios de Ligação , Cromatina , Doença , Epigenômica/métodos , Técnicas de Inativação de Genes , Genoma , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
5.
Front Mol Neurosci ; 11: 352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337854

RESUMO

LUMAN/CREB3, originally identified through its interaction with a cell cycle regulator HCFC1, is a transcription factor involved in the unfolded protein response during endoplasmic reticulum stress. Previously using gene knockout mouse models, we have shown that LUMAN modulates the glucocorticoid (GC) response leading to enhanced glucocorticoid receptor (GR) activity and lower circulating GC levels. Consequently, the stress response is dysregulated, leading to a blunted stress response in the Luman-deficient mice. One question that remained was how LUMAN deficiency affected the stress response at the cellular level leading to the changes in the physiological stress response. Here, we found that LUMAN interacts with GR through a putative nuclear receptor box site and can activate GR in the absence of a ligand. Further investigation showed that, when activated, LUMAN binds to the glucocorticoid response element (GRE), increasing the activity of GR exponentially compared to GR-ligand binding alone. On the other hand, we also found that in the absence of LUMAN, cells were more sensitive to cellular stress, exhibiting decreased secretory capacity. Hence our current data suggest that LUMAN may function both as a transcriptional cofactor of GR and a hormone secretion regulator, and through this, plays a role in stress sensitivity and reactivity to stress.

6.
Eur J Cell Biol ; 95(12): 611-622, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28029379

RESUMO

The recently identified Luman/CREB3-binding partner LRF (Luman/CREB3 recruitment factor) was shown to localize to discrete sub-nuclear foci. Luman is implicated in herpes simplex virus-1 (HSV-1) latency/reactivation and the unfolded protein response (UPR) pathway; therefore, we sought to characterize the formation of the LRF nuclear foci in the context of cellular signaling and HSV-1 replication. Here, we mapped the nuclear foci-targeting sequence to the central region containing the first leucine zipper (a.a.415-519), and found that the integrity of the whole region appears essential for LRF foci formation. LRF foci integrity was unaffected by inhibition of cellular DNA replication and translation, however, disruption of transcription resulted in altered LRF localization. When compared to other cellular and viral foci LRF co-localized with the nuclear receptor co-activator GRIP1, while the HSV-1 gene products ICP4, ICP27 and VP13/14 disrupted foci formation to varying degrees. Interestingly, cells over-expressing LRF were resistant to productive HSV-1 infection and this resistance was dependent upon protein targeting and an N-terminal transactivation domain. When LRF knockdown cells were subjected to primary infection, HSV-1 gene expression and progeny virus yield were enhanced by ∼3 fold compared to wildtype cells. Taken together, these results indicate that LRF is a key regulator that may act direct or indirectly as a repressor of essential genes required for productive viral infection.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Herpesvirus Humano 1/fisiologia , Fatores de Transcrição/metabolismo , Replicação Viral/fisiologia , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Proteínas Supressoras de Tumor/metabolismo , Resposta a Proteínas não Dobradas , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...