Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Jt Open ; 1(8): 450-456, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33215138

RESUMO

AIMS: To evaluate safety outcomes and patient satisfaction of the re-introduction of elective orthopaedic surgery on 'green' (non-COVID-19) sites during the COVID-19 pandemic. METHODS: A strategy consisting of phased relaxation of clinical comorbidity criteria was developed. Patients from the orthopaedic waiting list were selected according to these criteria and observed recommended preoperative isolation protocols. Surgery was performed at green sites (two local private hospitals) under the COVID-19 NHS contract. The first 100 consecutive patients that met the Phase 1 criteria and underwent surgery were included. In hospital and postoperative complications with specific enquiry as to development of COVID-19 symptoms or need and outcome for COVID-19 testing at 14 days and six weeks was recorded. Patient satisfaction was surveyed at 14 days postoperatively. RESULTS: There were 54 females and 46 males (mean age 44 years, mean body mass index (BMI) 25.6 kg/m2). In all, 56 patients underwent major orthopaedic procedures. There were no exclusions. One patient had a postoperative positive SARS-CoV-2 RT-PCR test but had no typical symptoms of COVID-19 infection and no clinical sequelae. 99% of patients were satisfied with the process and 98% would recommend undergoing elective orthopaedic surgery in the study period. CONCLUSION: In an environment with appropriate infrastructure, patient selection, isolation, screening, and testing, elective orthopaedic surgery is safe during the COVID-19 pandemic, and associated with high patient satisfaction. Further follow-up is required to establish that safety is maintained as the clinical restrictions are eased with the phased approach described.Cite this article: Bone Joint Open 2020;1-8:450-456.

2.
J Tissue Eng Regen Med ; 11(4): 1065-1076, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-25690518

RESUMO

Binary blend polymers offer the opportunity to combine different desirable properties into a single scaffold, to enhance function within the field of tissue engineering. Previous in vitro and murine in vivo analysis identified a polymer blend of poly(l-lactic acid)-poly(ε-caprolactone) (PLLA:PCL 20:80) to have characteristics desirable for bone regeneration. Polymer scaffolds in combination with marrow-derived skeletal stem cells (SSCs) were implanted into mid-shaft ovine 3.5 cm tibial defects, and indices of bone regeneration were compared to groups implanted with scaffolds alone and with empty defects after 12 weeks, including micro-CT, mechanical testing and histological analysis. The critical nature of the defect was confirmed via all modalities. Both the scaffold and scaffold/SSC groups showed enhanced quantitative bone regeneration; however, this was only found to be significant in the scaffold/SSCs group (p = 0.04) and complete defect bridging was not achieved in any group. The mechanical strength was significantly less than that of contralateral control tibiae (p < 0.01) and would not be appropriate for full functional loading in a clinical setting. This study explored the hypothesis that cell therapy would enhance bone formation in a critical-sized defect compared to scaffold alone, using an external fixation construct, to bridge the scale-up gap between small animal studies and potential clinical translation. The model has proved a successful critical defect and analytical techniques have been found to be both valid and reproducible. Further work is required with both scaffold production techniques and cellular protocols in order to successfully scale-up this stem cell/binary blend polymer scaffold. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.


Assuntos
Osso e Ossos/fisiologia , Polímeros/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Pesquisa Translacional Biomédica , Animais , Materiais Biocompatíveis/farmacologia , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Teste de Materiais , Osteogênese/efeitos dos fármacos , Ovinos , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Tíbia/patologia , Microtomografia por Raio-X
3.
J Biomed Mater Res A ; 101(12): 3431-7, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23568640

RESUMO

Skeletal stem cell (SSC) growth on a novel porous HA/TCP scaffold has been investigated in vivo. The effect of porosity on osteogenic differentiation was assessed by comparing two groups of scaffolds with differing porosity but controlled pore size. Histology, microCT, scanning electron microscopy, and biochemical analysis were used to assess SSC proliferation and differentiation. The 45 pores per inch (ppi) scaffold demonstrated a greater increase in density than the 30 ppi scaffold following in vivo culture, and a reduction in dimensions of the pores and channels of the higher porosity scaffold was observed, indicating generation of new tissue within the pores. All scaffolds supported SSC proliferation but the higher scaffold porosity augmented osteogenic differentiation. ALP specific activity was enhanced on the 45 ppi scaffold compared to the 30 ppi scaffold. These studies demonstrate the importance of porosity in scaffold design and impact therein for tissue engineering application.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cerâmica/farmacologia , Músculo Esquelético/citologia , Células-Tronco/citologia , Alicerces Teciduais/química , Adulto , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Microscopia Eletrônica de Varredura , Porosidade , Coloração e Rotulagem , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Microtomografia por Raio-X
4.
J Bone Joint Surg Am ; 95(8): 736-43, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595073

RESUMO

BACKGROUND: Strategies to improve mechanical strength, neovascularization, and the regenerative capacity of allograft include both the addition of skeletal stem cells and the investigation of novel biomaterials to reduce and ultimately obviate the need for allograft altogether. Use of bone cement is a common method of stabilizing implants in conjunction with impacted allograft. Curing cement, however, can reach temperatures in excess of 70°C, which is potentially harmful to skeletal stem cells. The aim of this study was to investigate the effects of setting bone cement on the survival of human adult skeletal stem cells within tissue-engineered allograft and a novel allograft substitute. METHODS: Milled allograft and a polymer graft substitute were seeded with skeletal stem cells, impacted into a graduated chamber, and exposed to curing bone cement. Sections were removed at 5-mm increments from the allograft-cement interface. A quantitative WST-1 assay was performed on each section as a measure of remaining cell viability. A second stage of the experiment involved assessment of methods to potentially enhance cell survival, including pretreating the allograft or polymer by either cooling to 5°C or coating with 1% Laponite, or both. RESULTS: There was a significant drop in cellular activity in the sections taken from within 0.5 cm of the cement interface in both the allograft and the polymer (p < 0.05), although there was still measurable cellular activity. Pretreatment methods did not significantly improve cell survival in any group. CONCLUSIONS: While the addition of bone cement reduced cellular viability of tissue-engineered constructs, this reduction occurred only in close proximity to the cement and measurable numbers of skeletal stem cells were observed, confirming the potential for cell population recovery.


Assuntos
Cimentos Ósseos , Substitutos Ósseos , Transplante Ósseo , Células-Tronco/fisiologia , Engenharia Tecidual , Idoso , Idoso de 80 Anos ou mais , Técnicas de Cultura de Células , Sobrevivência Celular , Durapatita , Humanos , Masculino , Poliésteres , Alicerces Teciduais
5.
J Child Orthop ; 6(4): 339-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23904902

RESUMO

PURPOSE: The pathogenesis of unicameral bone cysts (UBCs) remains largely unknown. Osteoclasts have been implicated, but the role of osteoblastic cells has, to date, not been explored. This study investigated the pathophysiology of UBCs by examining the interactions between the cyst fluid and human bone marrow stromal cells (hBMSCs) and the effect of the fluid on osteogenesis. METHODS: Fluid was aspirated from two UBCs and analysed for protein, electrolyte and cytokine levels. Graded concentrations of the fluid were used as culture media for hBMSCs to determine the effects of the fluid on hBMSC proliferation and osteogenic differentiation. The fibrocellular lining was analysed histologically and by electron microscopy. RESULTS: Alkaline phosphatase (ALP) staining of hBMSCs that were cultured in cyst fluid demonstrated increased cell proliferation and osteogenic differentiation compared to basal media controls. Biochemical analysis of these hBMSCs compared to basal controls confirmed a marked increase in DNA content (as a marker of proliferation) and ALP activity (as a marker of osteogenic differentiation) which was highly significant (p < 0.001). Osteoclasts were demonstrated in abundance in the cyst lining. The cyst fluid cytokine profile revealed levels of the pro-osteoclast cytokines IL-6, MIP-1α and MCP-1 that were 19×, 31× and 35× greater than those in reference serum. CONCLUSIONS: Cyst fluid promoted osteoblastic growth and differentiation. Despite appearing paradoxical that the cyst fluid promoted osteogenesis, osteoblastic cells are required for osteoclastogenesis through RANKL signalling. Three key cytokines in this pathway (IL-6, MIP-1α, MCP-1) were highly elevated in cyst fluid. These findings may hold the key to the pathogenesis of UBCs, with implications for treatment methods.

6.
Regen Med ; 6(4): 461-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21749204

RESUMO

AIM: Tissue engineering has enormous potential for the regeneration of bone defects. Approximately 4 years ago we reported on a 62 year old patient who underwent treatment of a benign cyst in the proximal femur by impaction bone grafting supplemented with autologous bone marrow. The cyst and symptoms subsequently recurred and this patient has now required a total hip replacement. This has provided a rare opportunity for ex vivo analysis of clinically applied tissue engineered bone. MATERIALS & METHODS: The femoral head was retrieved at surgery and the structural and functional characteristics of the tissue engineered bone were analyzed by micro-computed tomography, histology and mechanical testing. RESULTS: The impacted bone demonstrated a trabecular structure that contained islands of nonincorporated graft. The graft was denser than the patient's trabecular bone with comparable strength. The cyst material had penetrated along the channel of bone and an increased number of osteoclasts were observed. DISCUSSION: This study has provided detailed ex vivo analysis of retrieved human tissue engineered bone and possible reasons for the observed construct failure are discussed in this article. The impacted bone displayed some evidence of remodeled trabecular structure, although the bone marrow aspirate that was initially combined with the allograft contained a relatively low concentration of osteoprogenitor cells. Cellular augmentation was insufficient to overcome the osteoclastic process associated with renewed cyst formation. Concentration or culture expansion of osteoprogenitor cells from aspirated bone marrow is recommended for biological augmentation of bone graft.


Assuntos
Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica/métodos , Fenômenos Biomecânicos/fisiologia , Densidade Óssea , Cistos/diagnóstico por imagem , Cistos/patologia , Fêmur/diagnóstico por imagem , Fêmur/patologia , Fêmur/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Microtomografia por Raio-X
7.
Tissue Eng Part B Rev ; 17(5): 307-20, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21615329

RESUMO

Loss of skeletal tissue as a consequence of trauma, injury, or disease is a significant cause of morbidity with often wide-ranging socioeconomic impacts. Current approaches to replace or restore significant quantities of lost bone come with substantial limitations and inherent disadvantages that may in themselves cause further disability. In addition, the spontaneous repair capacity of articular cartilage is limited; thus, investigation into new cartilage replacement and regeneration techniques are warranted. Along with the challenges of an increasingly aging demographic, changing clinical scenarios and rising functional expectations provide the imperative for new, more reliable skeletal regeneration strategies. The science of tissue engineering has expanded dramatically in recent years, notably in orthopedic applications, and it is clear that new approaches for de novo skeletal tissue formation offer exciting opportunities to improve the quality of life for many, particularly in the face of increasing patient expectations. However, significant scientific, financial, industrial, and regulatory challenges should be overcome before the successful development of an emergent tissue engineering strategy can be realized. We outline current practice for replacement of lost skeletal tissue and the innovative approaches in tissue regeneration that have so far been translated to clinical use, along with a discussion of the significant hurdles that are presented in the process of translating research strategies to the clinic.


Assuntos
Envelhecimento/fisiologia , Regeneração Óssea/fisiologia , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Distribuição por Idade , Humanos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...