Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(38): 43067-43084, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121444

RESUMO

Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3-δ for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different Sr0.5Pr0.5Fe0.4-xMgxTi0.6O3-δ (x = 0, 0.1, and 0.2) samples are prepared. The synthesized Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3-δ (SPFMg0.2T) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm-1 along with an attractive fuel cell performance of 0.83 W cm-2 at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMg0.2T presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO3-δ and Sr0.5Pr0.5Fe0.4-xMgxTi0.6O3-δ (x = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMg0.2T with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, Sr0.5Pr0.5Fe0.4Ti0.6O3-δ is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.

3.
Mikrochim Acta ; 188(5): 177, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33907901

RESUMO

Nanocomposites can offer a platform to conjugate biorecognition features of aptamer with unique size-dependent properties of a given material, which can autoprobe the binding event based on their electroactive characteristics. Herein, we design electroactive switchable aptamer probes based on co-doped single-phase semiconducting materials employing the cyclic voltammetry method to record the current signal at each step of electrochemical characterization. To do so, we utilized a facile hydrothermal method assisted by co-precipitation method such as Co-Fe-co-doped Ba0.5Sr0.5Zr0.1Y0.1O3-δ (CF-BSZY) and tuned the alignment of the energy band structure of the material to amplify the output of the electrochemical signal. At various steps, changes occurred in the electrochemical properties at the surface of CF-BSZY. The binding of the ssDNA with prepared materials enhances the current signal by the interaction with the target (ochratoxin A (OTA)) depressing the current signal and facilitating the construction of a novel design of electrochemical aptasensor. As a proof of concept, an electrochemical aptasensor for the detection of ochratoxin A (OTA) in rice samples has been developed. The electrochemical aptasensor provides a limit of detection (LOD) of 0.00012 µM (0.12 nM), with a linear range from 0.000247 to 0.74 µM and sound OTA recovery in real samples. The developed aptasensor is simply designed and is free of oligonucleotide labeling or decorative nanoparticle modifications. The proposed mechanism is generic in principle with the potential to translate any type of aptamer and target binding event into a detectable signal; hence, it can be largely applied to various bioreceptor recognition phenomena for subsequent applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Metais Pesados/química , Ocratoxinas/análise , Semicondutores , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Técnicas Eletroquímicas/métodos , Contaminação de Alimentos/análise , Limite de Detecção , Ocratoxinas/química , Oryza/química , Estudo de Prova de Conceito , Reprodutibilidade dos Testes
4.
ACS Appl Mater Interfaces ; 12(31): 35071-35080, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32667772

RESUMO

Dual-ion electrolytes with oxygen ion and proton-conducting properties are among the innovative solid oxide electrolytes, which exhibit a low Ohmic resistance at temperatures below 550 °C. BaCo0.4Fe0.4Zr0.1Y0.1O3-δ with a perovskite-phase cathode has demonstrated efficient triple-charge conduction (H+/O2-/e-) in a high-performance low-temperature solid oxide fuel cell (LT-SOFC). Here, we designed another type of triple-charge conducting perovskite oxide based on Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3-δ (BSCFZY), which formed a heterostructure with ionic conductor Ca0.04Ce0.80Sm0.16O2-δ (SCDC), showing both a high ionic conductivity of 0.22 S cm-1 and an excellent power output of 900 mW cm-2 in a hybrid-ion LT-SOFC. In addition to demonstrating that a heterostructure BSCFZY-SCDC can be a good functional electrolyte, the existence of hybrid H+/O2- conducting species in BSCFZY-SCDC was confirmed. The heterointerface formation between BSCFZY and SCDC can be explained by energy band alignment, which was verified through UV-vis spectroscopy and UV photoelectron spectroscopy (UPS). The interface may help in providing a pathway to enhance the ionic conductivities and to avoid short-circuiting. Various characterization techniques are used to probe the electrochemical and physical properties of the material containing dual-ion characteristics. The results indicate that the triple-charge conducting electrolyte is a potential candidate to further reduce the operating temperature of SOFC while simultaneously maintaining high performance.

5.
J Biomater Sci Polym Ed ; 30(9): 785-796, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31018777

RESUMO

Cellulose-based nanocomposites have gained much attention due to their remarkable biological properties such as biodegradability, biocompatibility, and low toxicity. In this research work, 1-h-3-methylimidazolium hydrogen sulfate ionic liquid was employed as an efficient solvent for preparation of cellulosic Ag-nanocomposites (CRC/AgNPs composite) from Neem plant. Ionic liquid plays a dual role in obtaining cellulose-rich compound (CRC; removing lignin and hemicellulose components) and plant's extract (phenolic compounds such as flavonoids, tannins, etc.) that reduces the AgNO3 into AgNPs for preparation of CRC/AgNPs composite. The prepared CRC/AgNPs composite was characterized using XRD, FTIR and SEM techniques. The XRD and FTIR spectral analysis showed the characteristic peaks assigned to cellulosic constituent and AgNPs. SEM analysis revealed the particles in the range from 26 to 56 nm. The CRC/AgNPs composite was evaluated for its antibacterial and mechanical properties. The antibacterial activity against S. aureus and E. coli for CRC/AgNPs composite was observed in comparison to CRC. Cell viability and morphology were performed on MC3T3-E1 cells which showed no as such toxicity for the prepared CRC/AgNPs composite. Moreover, the addition of CRC/AgNPs composite as a filler increased the compression strength of polymeric materials.


Assuntos
Celulose/química , Celulose/farmacologia , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Nanocompostos/química , Nanotecnologia , Prata/química , Células 3T3 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva , Imidazóis/química , Camundongos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...