Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 44(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38699907

RESUMO

Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.


Assuntos
Apoptose , Colite Ulcerativa , Estresse Oxidativo , Triterpenos Pentacíclicos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Animais , Triterpenos Pentacíclicos/farmacologia , Ratos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Modelos Animais de Doenças , Anti-Inflamatórios/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Wistar
2.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682748

RESUMO

A higher concentration of apolipoprotein A-I (ApoA-I) is associated with increased high density lipoprotein functionality and reverse cholesterol transport (RCT). A promising strategy to prevent cardiovascular diseases is therefore to improve RCT by increasing de novo ApoA-I production. Since experimental animal models have suggested effects of amino acids on hepatic lipoprotein metabolism, we here examined the effects of different amino acids on hepatic ApoA-I production. Human hepatocytes (HepG2) were exposed to six individual amino acids for 48 h. ApoA-I transcription and secreted pro-ApoA-I protein concentrations were analyzed using quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assays (ELISA), respectively. Additionally, CPT1 and KEAP1 mRNA expression, peroxisome proliferator-activated receptor alpha (PPARα) transactivation, and mechanistic target of rapamycin complex 1 (mTORC1) phosphorylation were determined. Leucine, glutamic acid, and tryptophan increased ApoA-I and CPT1 mRNA expression. Tryptophan also strongly increased PPARα transactivation. Glutamine, proline, and histidine increased pro-ApoA-I protein concentrations but mTORC1 phosphorylation remained unchanged regardless of the amino acid provided. In conclusion, individual amino acids have different effects on ApoA-I mRNA expression and pro-ApoA-I production which can partially be explained by specific effects on PPARα transactivation, while mTORC1 phosphorylation remained unaffected.


Assuntos
Apolipoproteína A-I , PPAR alfa , Aminoácidos/metabolismo , Animais , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , RNA Mensageiro/genética , Ativação Transcricional , Triptofano/metabolismo
3.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206021

RESUMO

Apolipoprotein A-I (ApoA-I) is the major protein of high density lipoprotein (HDL) particles and has a crucial role in reverse cholesterol transport (RCT). It has been postulated that elevating production of de novo ApoA-I might translate into the formation of new functional HDL particles that could lower cardiovascular disease (CVD) risk via RCT. During inflammation, serum ApoA-I concentrations are reduced, which contributes to the development of dysfunctional HDL particles as Serum Amyloid A (SAA) overtakes the position of ApoA-I within the HDL particles. Therefore, instead of elevating serum HDL cholesterol concentrations, rescuing lower serum ApoA-I concentrations could be beneficial in both normal and inflamed conditions. Several nutritional compounds, amongst others short chain fatty acids (SCFAs), have shown their capacity to modulate hepatic lipoprotein metabolism. In this review we provide an overview of HDL and more specific ApoA-I metabolism, SCFAs physiology and the current knowledge regarding the influence of SCFAs on ApoA-I expression and synthesis in human liver cells. We conclude that the current evidence regarding the effect of SCFAs on ApoA-I transcription and secretion is promising, however there is a need to investigate which dietary fibres could lead to increased SCFAs formation and consequent elevated ApoA-I concentrations.


Assuntos
Apolipoproteína A-I/genética , Ácidos Graxos Voláteis/metabolismo , Inflamação/genética , Fígado/metabolismo , Apolipoproteína A-I/metabolismo , Colesterol/genética , Colesterol/metabolismo , Ácidos Graxos Voláteis/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
4.
Biomolecules ; 11(1)2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430253

RESUMO

Apolipoprotein A-I (ApoA-I) concentrations are decreased during inflammation, which may reduce high-density lipoprotein (HDL) functionality. Thus, rescuing ApoA-I concentrations during inflammation might help to prevent atherosclerosis. Recent studies have shown that butyric acid (C4) has anti-inflammatory effects and rescues ApoA-I production. However, whether intestinal short chain fatty acids (SCFAs) are able to influence hepatic processes is unknown. Therefore, we investigated C4 anti-inflammatory effects on ApoA-I transcription in the intestine-liver co-culture model. C4 dose-response experiments in the presence or absence of cytokines were performed in a co-culture system including Caco-2 cells, HepG2 cells, or both. Changes in ApoA-I transcription in Caco-2 cells and HepG2 cells were analyzed using qPCR. C4 increased ApoA-I expression in HepG2 cells that cultured alone. When both cells were cultured together, C4 decreased ApoA-I expression in Caco-2 cells and increased ApoA-I expression in HepG2 cells. However, adding C4 to apical Caco-2 cells resulted in a smaller effect in HepG2 cells compared with adding C4 directly to the hepatocytes. Moreover, C4 rescued ApoA-I expression in inflamed HepG2 cells. These findings suggests that intestinal SCFAs can affect hepatic processes. However, the smaller effect in the co-culture experiment indicates cross-talk between intestine and liver.


Assuntos
Apolipoproteína A-I/genética , Ácido Butírico/farmacologia , Inflamação/patologia , Intestinos/patologia , Fígado/metabolismo , Transcrição Gênica/efeitos dos fármacos , Apolipoproteína A-I/metabolismo , Células CACO-2 , Técnicas de Cocultura , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Int J Mol Sci ; 21(14)2020 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708494

RESUMO

Concentrations of apolipoprotein A-I (ApoA-I) decrease during inflammation, which may lead to dysfunctional ApoA-I-poor high-density lipoprotein (HDL) particles, and as such, elevate cardiovascular risk. Therefore, rescuing ApoA-I concentrations, especially during inflammation, seems beneficial. Recently, short-chain fatty acids (SCFAs) have received more attention as a strategy in reversing atherosclerosis. We here evaluated the effects of SCFAs on inflammatory pathways in relation to ApoA-I transcription. SCFAs dose-response studies were performed in the presence and absence of inflammatory cytokines. ApoA-I and interleukin 8 (IL-8) mRNA expression were analyzed using qPCR and ELISA, respectively. To study underlying mechanisms, nuclear factor kappa B (NF-κB) transactivation and changes in mRNA expressions of the genes targets of bromodomain and extra-terminal (BET) inhibition, peroxisome proliferator-activated receptor-alpha (PPARα) transactivation and activator protein 1 (AP-1) pathway were analyzed. SCFAs (except hexanoic acid) increased ApoA-I mRNA transcription in both normal and inflammatory conditions and lowered IL-8 mRNA expression. This anti-inflammatory effect of SCFAs was confirmed by inhibition of NF-κB transactivation. Moreover, butyric acid increased carnitine palmitoyltransferase 1 (CPT1), PPARα target gene, mRNA transcription in both conditions, and there was a negative correlation between CPT1 and NF-κB. Therefore, PPARα transactivation is probably involved in the anti-inflammatory effects of SCFAs, which rescues ApoA-I transcription. In conclusion, propionate, butyrate and valerate elicit anti-inflammatory effects which might rescue ApoA-I transcription in inflammatory conditions via PPARα transactivation mediated NF-κB inhibition.


Assuntos
Apolipoproteína A-I/metabolismo , Ácidos Graxos Voláteis/farmacologia , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , PPAR alfa/metabolismo , Ativação Transcricional/efeitos dos fármacos , Apolipoproteína A-I/genética , Butiratos/farmacologia , Caproatos/farmacologia , Carnitina O-Palmitoiltransferase/metabolismo , Células Hep G2 , Humanos , Proteínas I-kappa B/genética , Inflamação/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Valeratos/farmacologia
6.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783518

RESUMO

In a recent human study, we observed that amoxicillin treatment decreased HDL-C concentration. We hypothesize that antibiotics lower the transcription and secretion of ApoA-I, the responsible protein for HDL production. HepG2 and Caco-2 cells were exposed to increasing dose of amoxicillin, penicillin, and streptomycin. Secreted ApoA-I protein and mRNA transcripts were analyzed using ELISA and qPCR, respectively. To unravel underlying mechanisms, KEAP1, CPT1, and CHOP mRNA expressions were determined as well as PPARα transactivation. In HepG2 and Caco-2, amoxicillin decreased ApoA-I transcription and secretion. Effects on ApoA-I expression were clearly there for amoxicillin while no effects were observed for penicillin or streptomycin. KEAP1, CPT1, and CHOP mRNA expressions were reduced by amoxicillin treatments. Moreover, a significant correlation between ApoA-I and CPT1 mRNA expressions was found. Furthermore, amoxicillin lowered PPARα transactivation. All together, these data suggest that inhibited PPARα transactivation is involved in the effects of amoxicillin on ApoA-I. In conclusion, the direct effect of amoxicillin in treated HepG2 and Caco-2 cells was a lower ApoA-I secretion and transcription. Based on evaluating alterations in KEAP1, CPT1, and CHOP mRNA expressions plus PPARα transactivation, we suggest that a reduced PPARα activation is a potential mechanism behind the observed amoxicillin effects on ApoA-I expression.


Assuntos
Amoxicilina/farmacologia , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , PPAR alfa/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Células CACO-2 , Carnitina O-Palmitoiltransferase/genética , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , RNA Mensageiro/genética , Fator de Transcrição CHOP/genética
7.
J Cell Biochem ; 120(10): 17219-17227, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106471

RESUMO

BACKGROUND: Apolipoprotein-I (ApoA-I), the major component of high-density lipoprotein (HDL) particles, mediates cholesterol efflux by which it facilitates the removal of excess cholesterol from peripheral tissues. Therefore, elevating ApoA-I production leading to the production of new pre-ß-HDL particles is thought to be beneficial in the prevention of cardiovascular diseases. Recently, we observed that amoxicillin treatment led to decreased HDL concentrations in healthy human volunteers. We questioned whether this antibiotic effect was directly or indirectly, via changed short-chain fatty acids (SCFA) concentrations through an altered gut microflora. Therefore, we here evaluated the effects of amoxicillin and various SCFA on hepatic ApoA-I expression, secretion, and the putative underlying pathways. METHODS AND RESULTS: Human hepatocytes (HepG2) were exposed to increasing dose of amoxicillin or SCFA for 48 hours. ApoA-I messenger RNA (mRNA) transcription and secreted protein were analyzed using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. To study underlying mechanisms, changes in mRNA expression of KEAP1, CPT1, and PPARα, as well as a PPARα transactivation assay, were analyzed. Amoxicillin dose-dependently decreased ApoA-I mRNA transcription as well as ApoA-I protein secretion. SCFA treatment resulted in a dose-dependent stimulation of ApoA-I mRNA transcription, however, the ApoA-I protein secretion was decreased. Furthermore, SCFA treatment increased PPARα transactivation, PPARα and CPT1 mRNA transcription, whereas KEAP1 mRNA transcription was decreased. CONCLUSION: Direct treatment of HepG2 cells with amoxicillin has either direct effects on lowering ApoA-I transcription and secretion or indirect effects via modified SCFA concentrations because SCFA were found to stimulate hepatic ApoA-I expression. Furthermore, BET inhibition and PPARα activation were identified as possible mechanisms behind the observed effects on ApoA-I transcription.


Assuntos
Apolipoproteína A-I/metabolismo , Ácidos Graxos Voláteis/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Hepatoblastoma/metabolismo , Neoplasias Hepáticas/metabolismo , Amoxicilina/farmacologia , Antibacterianos/farmacologia , Apolipoproteína A-I/genética , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/patologia , Humanos , Técnicas In Vitro , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , PPAR alfa/genética , PPAR alfa/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...