Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2242): 20210238, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587819

RESUMO

The self-organization of structures in a tokamak plasma as it undergoes an [Formula: see text]-mode transition shows properties similar to simpler shear flow configurations. We will describe recent dynamical studies of plasma shear flows, including the idea of tracking the edge of chaos that separates two bistable states, computing the nonlinear minimal seed that can lead to turbulence, finding the attractor solution on the edge and seeing how starting from this solution we can understand the stability of relative period orbits that permeate the turbulent basin of attraction. We present a modus operandi developed for these simple configurations that can be adapted to understand the [Formula: see text]-mode transition. This article is part of a discussion meeting issue 'H-mode transition and pedestal studies in fusion plasmas'.

2.
Phys Rev Lett ; 117(24): 245101, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009188

RESUMO

We analyze plasma heating in weakly collisional kinetic Alfvén wave turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e., J·(E+v_{e}×B), as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25215682

RESUMO

The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.


Assuntos
Hidrodinâmica , Campos Magnéticos , Simulação por Computador , Cinética , Movimento (Física)
4.
Phys Rev Lett ; 109(23): 235003, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368214

RESUMO

The nature of nonlinear interactions in gyrokinetic turbulence, driven by the ion-temperature gradient instability, is investigated using direct numerical simulations in toroidal flux tube geometry. To account for the level of separation existing between scales involved in an energetic interaction, the degree of locality of the free energy scale flux is analyzed employing Kraichnan's infrared (IR) and ultraviolet locality functions. Because of the nontrivial dissipative nature of gyrokinetic turbulence, an asymptotic level for the locality exponents, indicative of a universal dynamical regime for gyrokinetics, is not recovered and an accentuated nonlocal behavior of the IR interactions is found instead, in spite of the local energy cascade observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...