Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol ; 135(1): 95-113, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29116375

RESUMO

N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Encéfalo/patologia , Doença de Canavan/metabolismo , Doença de Canavan/terapia , Acetiltransferases/metabolismo , Amidoidrolases/administração & dosagem , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Doença de Canavan/patologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Terapia Genética , Humanos , Masculino , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fenótipo , RNA Mensageiro/metabolismo
2.
PLoS One ; 8(6): e65646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23799030

RESUMO

Recombinant adeno-associated virus (AAV) vectors are versatile tools for gene transfer to the central nervous system (CNS) and proof-of-concept studies in adult rodents have shown that the use of cell type-specific promoters is sufficient to target AAV-mediated transgene expression to glia. However, neurological disorders caused by glial pathology usually have an early onset. Therefore, modelling and treatment of these conditions require expanding the concept of targeted glial transgene expression by promoter selectivity for gene delivery to the immature CNS. Here, we have investigated the AAV-mediated green fluorescent protein (GFP) expression driven by the myelin basic protein (MBP) or glial fibrillary acidic protein (GFAP) promoters in the developing mouse brain. Generally, the extent of transgene expression after infusion at immature stages was widespread and higher than in adults. The GFAP promoter-driven GFP expression was found to be highly specific for astrocytes following vector infusion to the brain of neonates and adults. In contrast, the selectivity of the MBP promoter for oligodendrocytes was poor following neonatal AAV delivery, but excellent after vector injection at postnatal day 10. To extend these findings obtained in naïve mice to a disease model, we performed P10 infusions of AAV-MBP-GFP in aspartoacylase (ASPA)-deficient mouse mutants presenting with early onset oligodendrocyte pathology. Spread of GFP expression and selectivity for oligodendrocytes in ASPA-mutants was comparable with our observations in normal animals. Our data suggest that direct AAV infusion to the developing postnatal brain, utilising cellular promoters, results in targeted and long-term transgene expression in glia. This approach will be relevant for disease modelling and gene therapy for the treatment of glial pathology.


Assuntos
Astrócitos/metabolismo , Dependovirus/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Básica da Mielina/genética , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas , Fatores Etários , Animais , Animais Recém-Nascidos , Astrócitos/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Doença de Canavan/patologia , Doença de Canavan/terapia , Células Cultivadas , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Camundongos Endogâmicos C57BL , Oligodendroglia/virologia , Especificidade de Órgãos , Transgenes
3.
Int J Biochem Cell Biol ; 43(7): 1002-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20633696

RESUMO

Prognostic markers that can distinguish indolent from aggressive prostate cancer could have substantial patient benefit, helping to target patients most in need of radical intervention, while avoiding overtreatment of a highly prevalent condition. The search for novel cancer biomarkers has been facilitated by the development of technologies for "global" biomolecular profiling, used in the sciences of transcriptomics, proteomics and metabolic profiling (metabonomics/metabolomics). Using an NMR-based approach we compared intracellular and extracellular metabolic profiles from the immortalised, non-tumourigenic prostate epithelial cell line, RWPE-1 and two tumourigenic sublines with increasing malignant phenotypes, WPE1-NB14 and WPE1-NB11, generated by N-methyl-N-nitrosourea (MNU) mutagenesis. Collectively, these cell lines present an in vitro model of prostate cancer progression and disease aggression. We observed progressive alterations to intracellular levels of multiple metabolites from choline and branched chain amino acid metabolic pathways from RWPE-1 to WPE1-NB14 to WPE1-NB11 cells. In addition specific perturbations to intracellular glycine and lactate and extracellular lactate and alanine were observed relative to the parent line. The pathways implicated by comparative metabolic profiling in this model are known to be altered in human prostate cancer, and potentially represent a source of biomarkers for prostate cancer aggression.


Assuntos
Biomarcadores Tumorais , Células Epiteliais/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Neoplasias da Próstata/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Colina/análise , Colina/metabolismo , Progressão da Doença , Humanos , Ácido Láctico/análise , Ácido Láctico/metabolismo , Masculino , Metilnitrosoureia , Camundongos , Próstata/metabolismo , Células Tumorais Cultivadas
4.
J Biol Chem ; 283(33): 22700-8, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18541534

RESUMO

High lactate generation and low glucose oxidation, despite normal oxygen conditions, are commonly seen in cancer cells and tumors. Historically known as the Warburg effect, this altered metabolic phenotype has long been correlated with malignant progression and poor clinical outcome. However, the mechanistic relationship between altered glucose metabolism and malignancy remains poorly understood. Here we show that inhibition of pyruvate dehydrogenase complex (PDC) activity contributes to the Warburg metabolic and malignant phenotype in human head and neck squamous cell carcinoma. PDC inhibition occurs via enhanced expression of pyruvate dehydrogenase kinase-1 (PDK-1), which results in inhibitory phosphorylation of the pyruvate dehydrogenase alpha (PDHalpha) subunit. We also demonstrate that PDC inhibition in cancer cells is associated with normoxic stabilization of the malignancy-promoting transcription factor hypoxia-inducible factor-1alpha (HIF-1alpha) by glycolytic metabolites. Knockdown of PDK-1 via short hairpin RNA lowers PDHalpha phosphorylation, restores PDC activity, reverts the Warburg metabolic phenotype, decreases normoxic HIF-1alpha expression, lowers hypoxic cell survival, decreases invasiveness, and inhibits tumor growth. PDK-1 is an HIF-1-regulated gene, and these data suggest that the buildup of glycolytic metabolites, resulting from high PDK-1 expression, may in turn promote HIF-1 activation, thus sustaining a feed-forward loop for malignant progression. In addition to providing anabolic support for cancer cells, altered fuel metabolism thus supports a malignant phenotype. Correction of metabolic abnormalities offers unique opportunities for cancer treatment and may potentially synergize with other cancer therapies.


Assuntos
Neoplasias de Cabeça e Pescoço/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Divisão Celular , Núcleo Celular/enzimologia , Sobrevivência Celular , Citosol/enzimologia , Glicólise , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Cinética , Invasividade Neoplásica , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Células Tumorais Cultivadas
5.
Prostate ; 68(10): 1035-47, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18459103

RESUMO

BACKGROUND: The TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mouse model has frequently been used in preclinical studies with chemotherapeutic/chemopreventive rationales. Here the hypothesis was tested using (1)H-NMR-based metabolic profiling that the TRAMP tumor metabolic phenotype resembles that reported for human prostate cancer. METHODS: Aqueous extracts or intact tissues of normal prostate from 8- ("young") or 28-("old") week-old C57BL/6J wild-type mice or of prostate tumor from age-matched TRAMP mice were analyzed by (1)H-NMR. Results were compared with immunohistochemical findings. Expression of choline kinase was studied at the protein and mRNA levels. RESULTS: In young TRAMP mice presenting with zonal hyperplasia, the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) was 22% below that in wild-type mice (P < 0.05). In old TRAMP mice with well-defined malignancy, reduced tumor levels of citrate (49%), choline (33%), PC (57%), GPC (66%), and glycerophosphoinositol (61%) were observed relative to normal prostate (P < 0.05). Hierarchical cluster analysis of metabolite levels distinguished between normal and malignant tissue in old but not young mice. While the reduction in tissue citrate resembles human prostate cancer, low levels of choline species in TRAMP tumors suggest atypical phospholipid metabolism as compared to human prostate cancer. TRAMP tumor and normal prostate tissues did not differ in expression of choline kinase, which is overexpressed in human prostate cancer. CONCLUSION: Although prostate cancer in TRAMP mice shares some metabolic features with that in humans, it differs with respect to choline phospholipid metabolism, which could impact upon the interpretation of results from biomarker or chemotherapy/chemoprevention studies.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais , Ressonância Magnética Nuclear Biomolecular/métodos , Fosfolipídeos/metabolismo , Neoplasias da Próstata/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Colina/metabolismo , Colina Quinase/genética , Colina Quinase/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glicerilfosforilcolina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilcolinas/metabolismo , Fosforilcolina/metabolismo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Prótons
6.
Anal Chem ; 78(13): 4307-18, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16808437

RESUMO

Concurrent with the explosion in the number of publications reporting biomarker discovery by profiling technologies, such as proteomics and pattern recognition, has been the increase in evidence highlighting the susceptibility of these approaches to analytical and experimental bias. The work presented here addresses these timely issues by delivering a detailed characterization of the effect of common sources of bias in clinical studies on serum and plasma profiles generated by a key technology in metabonomics, NMR spectroscopy. Specifically, differences in composition when blood samples were collected onto and in the absence of ice, over a series of serum-clot contact times, the stability of NMR-prepared samples over time and the effect on the metabolic profile of freeze-thawing were examined. While differences between individuals were far greater than variation from any other experimental factor, each of the conditions examined did cause slight alterations to the NMR profile that could produce a systematic bias. Variation due to clotting time caused changes in energy metabolites, which were delayed by ice with no other spectral effects. Room-temperature stability and hence NMR spectral repeatability were high (<1% intrasample variation). Higher molecular weight species such as lipoproteins were more susceptible to the variations present in the examined factors. These observations have implications for profiling study design, and hence, our results form a new and valuable resource for those attempting clinical metabolic profiling, for regulatory agencies involved in the licensing of clinical tests and in the generation of international reporting standards for metabonomics.


Assuntos
Variações Dependentes do Observador , Plasma/metabolismo , Soro/metabolismo , Humanos , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...