Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(14): 4429-4445, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37246986

RESUMO

Stem cell-based cell therapeutics and especially those based on human mesenchymal stem cells (hMSCs) and induced pluripotent stem cells (hiPSCs) are said to have enormous developmental potential in the coming years. Their applications range from the treatment of orthopedic disorders and cardiovascular diseases to autoimmune diseases and even cancer. However, while more than 27 hMSC-derived therapeutics are currently commercially available, hiPSC-based therapeutics have yet to complete the regulatory approval process. Based on a review of the current commercially available hMSC-derived therapeutic products and upcoming hiPSC-derived products in phase 2 and 3, this paper compares the cell therapy manufacturing process between these two cell types. Moreover, the similarities as well as differences are highlighted and the resulting impact on the production process discussed. Here, emphasis is placed on (i) hMSC and hiPSC characteristics, safety, and ethical aspects, (ii) their morphology and process requirements, as well as (iii) their 2- and 3-dimensional cultivations in dependence of the applied culture medium and process mode. In doing so, also downstream processing aspects are covered and the role of single-use technology is discussed. KEY POINTS: • Mesenchymal and induced pluripotent stem cells exhibit distinct behaviors during cultivation • Single-use stirred bioreactor systems are preferred for the cultivation of both cell types • Future research should adapt and modify downstream processes to available single-use devices.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Técnicas de Cultura de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos , Meios de Cultura , Reatores Biológicos , Diferenciação Celular
2.
Methods Mol Biol ; 2436: 83-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34611815

RESUMO

In recent years, the use of hMSCs, which may be isolated from adipose tissue among others, for the treatment of diseases has increased significantly. The cell quantities required for such therapeutic approaches, between 1012 and 1013, have thus far been predominantly produced using commercially available multi-tray systems, such as the Cell Factory (Thermo Fisher Scientific) or HYPERStack (Corning), which can be purchased with up to 40 layers. However, the handling of these planar multilayer systems is difficult, and process monitoring opportunities remain limited. Here, automated stirred single-use bioreactors provide a viable alternative to the time-consuming multiplication of cells using such planar systems, while still managing to achieve the desired clinically relevant quantities. In these stirred single-use systems, adherent cells are predominantly cultivated in suspension up to pilot scale using carrier materials, also referred to as microcarriers (MCs).This chapter describes the steps which need to be realized to guarantee successful hMSC expansion within a stirred single-use bioreactor (Eppendorf's BioBLU® 0.3c) operated using MCs under serum- and xeno-free conditions at benchtop scale. The cultivations were performed using an immortalized human adipose-derived mesenchymal stem cell (hASC) line, hence referred to as hASC52telo, and a new chemically defined, xeno-free medium, hence referred to as the UrSuppe formulation. Spinner flask cultivations were performed under comparable process conditions.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Mesenquimais , Reatores Biológicos , Proliferação de Células , Meios de Cultura/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...