Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(37): 15216-15224, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28717002

RESUMO

Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease.


Assuntos
Replicação do DNA , DNA/metabolismo , RNA/metabolismo , Origem de Replicação , Ribonuclease H/metabolismo , Substituição de Aminoácidos , Posicionamento Cromossômico , DNA/química , Dano ao DNA , Período de Replicação do DNA , Regulação da Expressão Gênica , Instabilidade Genômica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/química , Interferência de RNA , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/genética , Homeostase do Telômero
2.
J Biol Chem ; 290(24): 15133-45, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25922071

RESUMO

The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for normal, complete leading strand replication at telomeres. We find that the loss of FEN1 nuclease activity, but not DNA repair activities, results in leading strand-specific telomere fragility. Furthermore, we show that FEN1 depletion-induced telomere fragility is increased by RNA polymerase II inhibition and is rescued by ectopic RNase H1 expression. These data suggest that FEN1 limits leading strand-specific telomere fragility by processing RNA:DNA hybrid/flap intermediates that arise from co-directional collisions occurring between the replisome and RNA polymerase. Our data reveal the first molecular mechanism for leading strand-specific telomere fragility and the first known role for FEN1 in leading strand DNA replication. Because FEN1 mutations have been identified in human cancers, our findings raise the possibility that unresolved RNA:DNA hybrid structures contribute to the genomic instability associated with cancer.


Assuntos
Endonucleases Flap/metabolismo , Telômero , Western Blotting , Dano ao DNA , Replicação do DNA , Endonucleases Flap/genética , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
3.
J Biol Chem ; 285(35): 27057-27066, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20551483

RESUMO

Telomeres are terminal repetitive DNA sequences whose stability requires the coordinated actions of telomere-binding proteins and the DNA replication and repair machinery. Recently, we demonstrated that the DNA replication and repair protein Flap endonuclease 1 (FEN1) is required for replication of lagging strand telomeres. Here, we demonstrate for the first time that FEN1 is required for efficient re-initiation of stalled replication forks. At the telomere, we find that FEN1 depletion results in replicative stress as evidenced by fragile telomere expression and sister telomere loss. We show that FEN1 participation in Okazaki fragment processing is not required for efficient telomere replication. Instead we find that FEN1 gap endonuclease activity, which processes DNA structures resembling stalled replication forks, and the FEN1 interaction with the RecQ helicases are vital for telomere stability. Finally, we find that FEN1 depletion neither impacts cell cycle progression nor in vitro DNA replication through non-telomeric sequences. Our finding that FEN1 is required for efficient replication fork re-initiation strongly suggests that the fragile telomere expression and sister telomere losses observed upon FEN1 depletion are the direct result of replication fork collapse. Together, these findings suggest that other nucleases compensate for FEN1 loss throughout the genome during DNA replication but fail to do so at the telomere. We propose that FEN1 maintains stable telomeres by facilitating replication through the G-rich lagging strand telomere, thereby ensuring high fidelity telomere replication.


Assuntos
Replicação do DNA/fisiologia , DNA/metabolismo , Endonucleases Flap/metabolismo , Telômero/metabolismo , Ciclo Celular/fisiologia , DNA/genética , Endonucleases Flap/genética , Células HeLa , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/genética
4.
PLoS Genet ; 5(7): e1000544, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19578401

RESUMO

Adult stem cells are responsible for maintaining and repairing tissues during the life of an organism. Tissue repair in humans, however, is limited compared to the regenerative capabilities of other vertebrates, such as the zebrafish (Danio rerio). An understanding of stem cell mechanisms, such as how they are established, their self-renewal properties, and their recruitment to produce new cells is therefore important for the application of regenerative medicine. We use larval melanocyte regeneration following treatment with the melanocytotoxic drug MoTP to investigate these mechanisms in Melanocyte Stem Cell (MSC) regulation. In this paper, we show that the receptor tyrosine kinase, erbb3b, is required for establishing the adult MSC responsible for regenerating the larval melanocyte population. Both the erbb3b mutant and wild-type fish treated with the ErbB inhibitor, AG1478, develop normal embryonic melanocytes but fail to regenerate melanocytes after MoTP-induced melanocyte ablation. By administering AG1478 at different time points, we show that ErbB signaling is only required for regeneration prior to MoTP treatment and before 48 hours of development, consistent with a role in establishing MSCs. We then show that overexpression of kitla, the Kit ligand, in transgenic larvae leads to recruitment of MSCs, resulting in overproliferation of melanocytes. Furthermore, kitla overexpression can rescue AG1478-blocked regeneration, suggesting that ErbB signaling is required to promote the progression and specification of the MSC from a pre-MSC state. This study provides evidence that ErbB signaling is required for the establishment of adult MSCs during embryonic development. That this requirement is not shared with the embryonic melanocytes suggests that embryonic melanocytes develop directly, without proceeding through the ErbB-dependent MSC. Moreover, the shared requirement of larval melanocyte regeneration and metamorphic melanocytes that develops at the larval-to-adult transition suggests that these post-embryonic melanocytes develop from the same adult MSC population. Lastly, that kitla overexpression can recruit the MSC to develop excess melanocytes raises the possibility that Kit signaling may be involved in MSC recruitment during regeneration.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Embrionárias/citologia , Melanócitos/citologia , Receptor ErbB-3/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Animais , Diferenciação Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Morfolinas/farmacologia , Mutação , Fenóis/farmacologia , Receptor ErbB-3/genética , Transdução de Sinais , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Gene Expr Patterns ; 8(4): 261-70, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18262473

RESUMO

Glycine, a major inhibitory neurotransmitter in the vertebrate nervous system, not only functions in synaptic signaling, but has also been implicated in regulating neuronal differentiation, neuronal proliferation, synaptic modeling, and neural network stability. Elements of the glycinergic phenotype include the membrane-bound glycine transporters (GLYT1 and GLYT2), which remove glycine from the synaptic cleft, and the vesicular inhibitory amino acid transporter (VIAAT or VGAT), which sequesters both glycine and GABA into synaptic vesicles. Here, we describe the spatial and temporal expression patterns of xGlyT1, xGlyT2, and xVIAAT during early developmental stages of Xenopus laevis. In situ hybridization reveals that xGlyT1 is first expressed in early tailbud stages in the midbrain, hindbrain, and anterior spinal cord; it extends posteriorly through the spinal cord and appears in the forebrain, retina, between the somites, and in the blood islands by swimming tadpole stages. xGlyT2 and xVIAAT initially appear in late neurula stages in the anterior spinal cord. By swimming tadpole stages, the expression of these genes appears in the forebrain, midbrain, and hindbrain and extends posteriorly through the spinal cord; xVIAAT is also expressed in the retina. Confocal analysis of multiplex fluorescent in situ hybridization signal in the spinal cord reveals that xGlyT1 and xGlyT2 share little cellular colocalization. While there is significant coexpression between xVIAAT and xGlyT2, xVIAAT and the GABAergic marker glutamic acid decarboxylase (xGAD67), and xGlyT2 and xGAD67, each gene also appears to have discrete, non-colocalized areas of expression.


Assuntos
Embrião não Mamífero/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Expressão Gênica , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , RNA Mensageiro/metabolismo , Análise de Sequência de Proteína , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas de Xenopus/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...