Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945742

RESUMO

OBJECTIVES: To assess the effects of different aging protocols on chemical, physical, and mechanical properties of an experimental ATZ composite compared to a zirconia. METHODS: Disc-shaped specimens were obtained through uniaxial pressing of commercial powders (Tosoh), ATZ comprised of 80%ZrO2/20%Al2O3 (TZ-3YS20AB) and 3Y-TZP (3Y-SBE). The specimens of each material were divided into different groups according to the aging protocol: immediate, autoclave aging and hydrothermal reactor aging. The aging protocols were performed at 134 ºC for 20 h at 2.2 bar. Crystalline evaluations were performed using X-Ray Diffraction. The nanoindentation tests measured the elastic modulus (Em) and hardness (H). Biaxial flexural strength was performed, and Weibull statistics were used to determine the characteristic strength and Weibull modulus. The probability of survival was also determined. The Em and H data were analyzed by one-way ANOVA and Tukey test. RESULTS: Diffractograms revealed the presence of monoclinic phase in both materials after aging. The hydrothermal reactor decreased the Em for ATZ compared to its immediate condition; and the H for both ATZ and 3Y-TZP regarding their immediate and autoclave aging conditions, respectively. The aging protocols significantly increased the characteristic strength for ATZ, while decreased for 3Y-TZP. No difference regarding Weibull modulus was observed, except for 3Y-TZP aged in reactor. For missions of up to 500 MPa, both materials presented a high probability of survival (>99 %) irrespective of aging condition. SIGNIFICANCE: The synthesized ATZ composite exhibited greater physical and microstructural stability compared to 3Y-TZP, supporting potential application of the experimental material for long-span reconstructive applications.

2.
Materials (Basel) ; 16(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138684

RESUMO

Dental zirconias have been broadly utilized in dentistry due to their high mechanical properties and biocompatibility. Although initially introduced in dentistry as an infrastructure material, the high rate of technical complications related to veneered porcelain has led to significant efforts to improve the optical properties of dental zirconias, allowing for its monolithic indication. Modifications in the composition, processing methods/parameters, and the increase in the yttrium content and cubic phase have been presented as viable options to improve zirconias' translucency. However, concerns regarding the hydrothermal stability of partially stabilized zirconia and the trade-off observed between optical and mechanical properties resulting from the increased cubic content remain issues of concern. While the significant developments in polycrystalline ceramics have led to a wide diversity of zirconia materials with different compositions, properties, and clinical indications, the implementation of strong, esthetic, and sufficiently stable materials for long-span fixed dental prostheses has not been completely achieved. Alternatives, including advanced polycrystalline composites, functionally graded structures, and nanosized zirconia, have been proposed as promising pathways to obtain high-strength, hydrothermally stable biomaterials. Considering the evolution of zirconia ceramics in dentistry, this manuscript aims to present a critical perspective as well as an update to previous classifications of dental restorative ceramics, focusing on polycrystalline ceramics, their properties, indications, and performance.

3.
J Mech Behav Biomed Mater ; 135: 105451, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36162164

RESUMO

To evaluate the effect of fatigue and aging on the crystalline content and reliability of a zirconia-toughened-alumina (ZTA) composite compared to its individual counterpart materials (3Y-TZP and Al2O3). Thirty-six disc-shaped specimens per group were obtained to comply with ISO 6872:2015. Crystalline content, microstructure and reliability of experimental groups were evaluated in four stages: 1) immediate; 2) aged; 3) fatigued; 4) aged + fatigue. Aging was performed in autoclave and Step-Stress-Accelerated-Life-Testing (SSALT) was performed using three stress profiles. Weibull statistics were used to determine Weibull parameters and life-expectancy. A significant increase in monoclinic phase in 3Y-TZP was observed after aging (19.31%), fatigue (17.88%) and aging + fatigue (55.81%), while ZTA evidenced minimal variation among all conditions (<5.69%). 3Y-TZP presented higher reliability than ZTA at 300 and 500 MPa, and ZTA outperformed Al2O3 at the same stress missions. None of the ceramics yielded acceptable reliability at 800 MPa. A higher characteristic strength was observed for 3Y-TZP, followed by ZTA and Al2O3. While after aging ZTA and Al2O3 remained stable, 3Y-TZP exhibited a significant increase in the characteristic stress. Aging did not affect the reliability of ZTA and Al2O3. 3Y-TZP demonstrated an increase in monoclinic content and characteristic strength after aging.


Assuntos
Óxido de Alumínio , Ítrio , Idoso , Óxido de Alumínio/química , Cerâmica/química , Materiais Dentários , Humanos , Teste de Materiais , Reprodutibilidade dos Testes , Propriedades de Superfície , Ítrio/química , Zircônio/química
4.
Luminescence ; 33(7): 1281-1287, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30252200

RESUMO

Monoclinic bismuth oxide (α-Bi2 O3 ) has attractive optical properties and, therefore, its photoluminescence (PL) behavior has been increasingly explored. Besides this fact, the influence of synthesis methods on PL properties of α-Bi2 O3 still requires research. This paper describes the influence of precipitation (PPT) and microwave-assisted hydrothermal (MAH) methods on PL properties of acicular α-Bi2 O3 microcrystals. The synthesis method promoted structural modifications on α-Bi2 O3 , in particular PPT increased the density of oxygen vacancies significantly. As a result, the PL properties of samples were different depending on the method of synthesis. PPT samples presented their maximum PL emission at 1.91 eV (red), while MAH samples had their maximum at 2.61 eV (blue). These results indicate the possibility of controlling PL properties of α-Bi2 O3 by simply choosing the adequate synthesis method.


Assuntos
Bismuto/química , Técnicas de Química Sintética/métodos , Corantes Fluorescentes/síntese química , Técnicas de Química Sintética/instrumentação , Cor , Corantes Fluorescentes/química , Luminescência , Micro-Ondas , Agulhas
5.
Inorg Chem ; 54(21): 10184-91, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26473463

RESUMO

Materials with high photoluminescence (PL) intensity can potentially be used in optical and electronic devices. Although the PL properties of bismuth(III) oxide with a monoclinic crystal structure (α-Bi2O3) have been explored in the past few years, methods of increasing PL emission intensity and information relating PL emission to structural defects are scarce. This research evaluated the effect of a pressure-assisted heat treatment (PAHT) on the PL properties of α-Bi2O3 with a needlelike morphology, which was synthesized via a microwave-assisted hydrothermal (MAH) method. PAHT caused an angular increase between the [BiO6]-[BiO6] clusters of α-Bi2O3, resulting in a significant increase in the PL emission intensity. The Raman and XPS spectra also showed that the α-Bi2O3 PL emissions in the low-energy region (below ∼2.1 eV) are attributed to oxygen vacancies that form defect donor states. The experimental results are in good agreement with first-principles total-energy calculations that were carried out within periodic density functional theory (DFT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...