Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Sport Sci ; 23(9): 1859-1867, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36404735

RESUMO

This study evaluated relationships between changes in training load, haematological responses, and endurance exercise performance during temperate and heat acclimation (HA) training preceding a male team cycling pursuit world record (WR). Haemoglobin mass (Hbmass) and concentration ([Hb]), plasma volume (PV) and blood volume (BV) were assessed in nine male track endurance cyclists (∼3 occasions per month) training in temperate conditions (247-142 days prior to the WR) to establish responses to differing acute (ATL) and chronic (CTL) training loads. Testing was performed again pre- and post-HA (22-28 days prior to the WR). Endurance performance (V̇O2max, 4MMP, lactate threshold 1 and 2) was assessed on three occasions (238-231, 189-182 and 133-126 days prior to the WR). In temperate conditions, CTL was associated with Hbmass (B = 0.62, P = 0.02), PV (B = 4.49, P = 0.01) and BV (B = 6.51, P = 0.04) but not [Hb] (B = -0.01, P = 0.17). ATL was associated with PV (B = 2.28, P < 0.01), BV (B = 2.63, P = 0.04) and [Hb] (B = -0.01, P = 0.04) but not Hbmass (B = 0.10, P = 0.41). During HA, PV increased 8.2% (P < 0.01), while Hbmass, CTL and ATL were unchanged. Hbmass and [Hb] were associated with all performance outcomes (P < 0.05), except V̇O2max. PV and BV were not associated with performance outcomes. During temperate training, changes in Hbmass were most strongly associated with changes in CTL. Both CTL and ATL were associated with changes in PV, but HA was associated with increased PV and maintenance of Hbmass without increasing ATL or CTL. In practical terms, maintaining high CTL and high Hbmass might be beneficial for improving endurance performance.HIGHLIGHTSChanges in haemoglobin mass were associated with endurance exercise performance and changes in chronic training load in temperate conditions.Heat acclimation increased plasma volume and maintained haemoglobin mass independently of chronic training load.Chronic training loads and haemoglobin mass should be increased to improve endurance exercise performance.Heat acclimation may optimise haematological adaptations when training load is reduced.


Assuntos
Volume Sanguíneo , Temperatura Alta , Humanos , Masculino , Volume Sanguíneo/fisiologia , Volume Plasmático , Hemoglobinas/análise , Aclimatação
2.
Med Sci Sports Exerc ; 55(1): 32-45, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35975926

RESUMO

PURPOSE: This study aimed to characterize the thermal and cardiovascular strain of professional cyclists during the 2019 Tour Down Under and determine the associations between thermal indices and power output, and physiological strain. METHODS: Gastrointestinal temperature ( Tgi ), heart rate (HR), and power output were recorded during the six stages (129-151.5 km) of the Tour Down Under in ≤22 male participants. Thermal indices included dry-bulb, black-globe, wet-bulb, and wet-bulb-globe (WBGT) temperature; relative humidity (RH), Heat Index; Humidex; and universal thermal climate index. The heat stress index (HSI), which reflects human heat strain, was also calculated. RESULTS: Dry-bulb temperature was 23°C-37°C, and RH was 18%-72% (WBGT: 21°C-29°C). Mean Tgi was 38.2°C-38.5°C, and mean peak Tgi was 38.9°C-39.4°C, both highest values recorded during stage 3 (WBGT: 27°C). Peak individual Tgi was ≥40.0°C in three stages and ≥39.5°C in 14%-33% of cyclists in five stages. Mean HR was 131-147 bpm (68%-77% of peak), with the highest mean recorded in stage 3 ( P ≤ 0.005). Mean power output was 180-249 W, with the highest mean recorded during stage 4 ( P < 0.001; 21°C WBGT). The thermal indices most strongly correlated with power output were black-globe temperature ( r = -0.778), RH ( r = 0.768), universal thermal climate index ( r = -0.762), and WBGT ( r = -0.745; all P < 0.001). Mean Tgi was correlated with wet-bulb temperature ( r = 0.495), HSI ( r = 0.464), and Humidex ( r = 0.314; all P < 0.05), whereas mean HR was most strongly correlated with HSI ( r = 0.720), along with Tgi ( r = 0.599) and power output ( r = 0.539; all P < 0.05). CONCLUSIONS: Peak Tgi reached 40.0°C in some cyclists, although most remained <39.5°C with an HR of ~73% of peak. Power output was correlated with several thermal indices, primarily influenced by temperature, whereas Tgi and HR were associated with the HSI, which has potential for sport-specific heat policy development.


Assuntos
Transtornos de Estresse por Calor , Exposição Ocupacional , Masculino , Humanos , Umidade , Temperatura Alta , Temperatura Cutânea
3.
Int J Sports Physiol Perform ; 15(1): 133-140, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31094262

RESUMO

PURPOSE: To investigate the effect of a 5-day short-term heat acclimation (STHA) protocol in dry (43°C and 20% relative humidity) or humid (32°C and 80% relative humidity) environmental conditions on endurance cycling performance in temperate conditions (21°C). METHODS: In a randomized, cross-over design, 11 cyclists completed each of the two 5-day blocks of STHA matched for heat index (44°C) and total exposure time (480 min), separated by 30 days. Pre- and post-STHA temperate endurance performance (4-min mean maximal power, lactate threshold 1 and 2) was assessed; in addition, a heat stress test was used to assess individual levels of heat adaptation. RESULTS: Differences in endurance performance were unclear. Following dry STHA, gross mechanical efficiency was likely reduced (between-condition effect size dry vs humid -0.59; 90% confidence interval, -1.05 to -0.15), oxygen uptake was likely increased for a given workload (0.64 [0.14 to 1.07]), and energy expenditure likely increased (0.59 [0.17 to 1.03]). Plasma volume expansion at day 5 of acclimation was similar (within-condition outcome 4.6% [6.3%] and 5.3% [5.1%] dry and humid, respectively) but was retained for 3 to 4 days longer after the final humid STHA exposure (-0.2% [8.1%] and 4.5% [4.2%] dry and humid, respectively). Sweat rate was very likely increased during dry STHA (0.57 [0.25 to 0.89]) and possibly increased (0.18 [-0.15 to 0.50]) during humid STHA. CONCLUSION: STHA induced divergent adaptations between dry and humid conditions, but did not result in differences in temperate endurance performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...