Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 275: 125963, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643712

RESUMO

This work introduces an innovative gold-leaf flow cell for electrochemical detection in flow injection (FI) analysis. The flow cell incorporates a hammered custom gold leaf electrochemical sensor. Hammered gold leaves consist of pure gold and are readily available in Thailand at affordable prices (approximately $0.085 for a sheet measuring 40 mm × 40 mm). Four sensing devices can be made from a single sheet of this gold leaf, resulting in a production cost of approximately $0.19 per sensor. Each electrochemical sensor has the gold leaf as the working electrode, together with a printed carbon strip, and a printed silver/silver chloride strip as the counter and reference electrodes, respectively. Initial investigations using cyclic voltammetry of a standard 1000 µmol L⁻1 iodide solution in 60 mmol L⁻1 phosphate buffer (PB) solution at pH 5, demonstrated performance comparable to that of a commercial screen-printed gold electrode. The hammered gold leaf electrode was then installed in a commercial flow cell as part of an FI system. A sample or standard iodide solution (100 µL) is injected into the first carrier stream of phosphate buffer (PB) solution, which then merges to mix with the second stream of the same buffer solution before flowing into the flow cell for amperometric detection of iodide. The optimized operating conditions include a fixed potential of +0.39 V (vs Ag/AgCl), and a total flow rate of 3 mL min⁻1. A linear calibration is obtained in the concentration range of 1 to 1000 µmol L⁻1 I- with a typical equation of µA = (0.00299 ± 0.00004) × (µmol L-1 I-) + (0.021 ± 0.020), and R2 = 0.9994. Analysis of iodide using this gold leaf-FI system is rapid with sample throughput of 86 samples h⁻1 and %RSD of a sample of 100 µmol L⁻1 I⁻ of 1.2 (n = 29). The limit of detection, (calculated as 2.78 × SD of regression line/slope), is 27 µmol L⁻1 I-. This method was successfully applied to determine iodide in nuclear emergency tablets.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Ouro , Iodetos , Comprimidos , Iodetos/análise , Ouro/química , Comprimidos/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Análise de Injeção de Fluxo/métodos , Limite de Detecção
2.
Anal Chim Acta ; 1144: 102-110, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453786

RESUMO

Electrical field-flow fractionation (ElFFF) is a useful separation technique for nanoparticles, however, it has been limited by polarization/electrical double layer formation which reduces an effective field for separation. With an appropriate direct current (DC) applied voltage, sodium carbonate, FL-70, Triton X-100 and acetonitrile were explored as additive substances for preparation of carrier liquid used in normal ElFFF to enhance an amplitude of effective field by their ionic redox-active species, ionic and nonionic surfactant and wide electrochemical potential window nonionic organic solvent properties, respectively. Effective field was indirectly measured in each carrier liquid by investigating retention behavior of polystyrene latex nanoparticles and gold nanoparticles. Effective field improvement was observed in all carrier liquid types (except FL-70) by which the highest effective field existed in 16 µM sodium carbonate at 1.70 V and 0.01% (V/V) Triton X-100 and 50% (V/V) acetonitrile at 1.90 V as compared to deionized water at 1.90 V. In addition, those carrier liquids were applied for separation of 5 nm and 15 nm gold nanoparticles mixture by which Triton X-100 exhibited the best separation resolution (Rs = 1.11).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...