Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 733: 150429, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053106

RESUMO

Fibroblast growth factor (FGF)-21 is a salient liver-derived endocrine regulator for metabolism of glucose and triglyceride as well as bone remodeling. Previously, certain peptides in the FGF family have been shown to modulate calcium absorption across the intestinal epithelia. Since FGF21 receptor, i.e., FGF receptor-1, is abundantly expressed in the enterocytes, there was a possibility that FGF21 might exert direct actions on the intestine. Herein, a large-scale production of recombinant FGF21 at the multi-gram level was developed in order to minimize variations among various batches. In the oral glucose tolerance test, recombinant FGF21 was found to reduce plasma glucose levels in mice fed high-fat diet. A series of experiments applying radioactive tracer 45Ca in Ussing chamber showed that FGF21 potentiated the stimulatory effect of low-dose 1,25-dihydroxyvitamin D3 [10 nM 1,25(OH)2D3] on the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. FGF21 + 1,25(OH)2D3 also decreased transepithelial resistance, but had no effect on epithelial potential difference or short-circuit current. Furthermore, 1,25(OH)2D3 alone upregulated the Caco-2 mRNA expression of the major apical calcium channels, i.e., transient receptor potential vanilloid subfamily member 6 (TRPV6), which was further elevated by a combination of FGF21 and 1,25(OH)2D3, consistent with the upregulated TRPV6 protein expression in enterocytes of FGF21-treated mice. However, FGF21 was without effects on the mRNA expression of voltage-gated calcium channel 1.3, calbindin-D9k, plasma membrane Ca2+-ATPase 1b, claudin-12 or claudin-15. In conclusion, FGF21 did exert a direct action on the intestinal epithelial cells by potentiating the 1,25(OH)2D3-enhanced calcium transport, presumably through the upregulation of TRPV6 expression.

2.
PLoS One ; 14(6): e0218479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199859

RESUMO

Pseudomonas aeruginosa is a leading cause of nosocomial and serious life-threatening infections and infections caused by this bacterium continue to pose a major medical challenge worldwide. The ability of P. aeruginosa to produce multiple virulence factors and in particular to form biofilms makes this bacterium resistant to all known antibiotics. As a consequence, standard antibiotic therapy are increasingly become ineffective to clear such infections associated with biofilms. In search for novel effective agents to combat P. aeruginosa biofilm infections, a series of the BmKn‒2 scorpion venom peptide and its truncated derivatives were synthesized and their antibiofilm activities assessed. Among the peptides tested, BmKn‒22 peptide, which was a modified peptide of the parental BmKn‒2 scorpion venom peptide, clearly demonstrated the most potential inhibitory activity against P. aeruginosa biofilms without affecting the bacterial growth. This peptide was not only capable of inhibiting the formation of P. aeruginosa biofilms, but also disrupting the established biofilms of P. aeruginosa. Additionally, BmKn‒22 peptide was able to inhibit the production of key virulence factor pyocyanin of P. aeruginosa. Our results also showed that BmKn‒22 peptide significantly reduced lasI and rhlR expression, and suggested that BmKn‒22 peptide-mediated inhibition of P. aeruginosa biofilms and virulence factors was achieved through the components of quorum-sensing systems. Combination of BmKn‒22 peptide with azithromycin resulted in a remarkable reduction P. aeruginosa biofilms. Since this peptide exhibited low toxicity to mammalian cells, all our results therefore indicate that the BmKn‒22 peptide is a promising antibiofilm agent against P. aeruginosa and warrant further development of this peptide as a novel therapeutic for treatment of P. aeruginosa‒associated biofilm infections.


Assuntos
Biofilmes/efeitos dos fármacos , Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Venenos de Escorpião/farmacologia , Fenômenos Químicos , Relação Dose-Resposta a Droga , Hemólise/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Peptídeos/química , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/efeitos dos fármacos , Venenos de Escorpião/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...