Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(3): e0173056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28257484

RESUMO

It has been well established that many vaccinia virus proteins suppress host antiviral pathways by targeting the transcription of antiviral proteins, thus evading the host innate immune system. However, whether viral proteins have an effect on the host's overall cellular transcription is less understood. In this study we investigated the regulation of heterochromatin during vaccinia virus infection. Heterochromatin is a highly condensed form of chromatin that is less transcriptionally active and characterized by methylation of histone proteins. We examined the change in methylation of two histone proteins, H3 and H4, which are major markers of heterochromatin, during the course of viral infection. Using immunofluorescence microscopy and flow cytometry we were able to track the overall change in the methylated levels of H3K9 and H4K20. Our results suggest that there is significant increase in methylation of H3K9 and H4K20 during Orthopoxviruses infection compared to mock-infected cells. However, this effect was not seen when we infected cells with Leporipoxviruses. We further screened several vaccinia virus single and multi-gene deletion mutant and identified the vaccinia virus gene K7R as a contributor to the increase in cellular histone methylation during infection.


Assuntos
Epigênese Genética , Fibroblastos/virologia , Histonas/metabolismo , Vaccinia virus/genética , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Montagem e Desmontagem da Cromatina , Embrião de Mamíferos , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Heterocromatina/ultraestrutura , Histonas/genética , Interações Hospedeiro-Patógeno , Humanos , Leporipoxvirus/genética , Leporipoxvirus/metabolismo , Metilação , Microscopia de Fluorescência , Mutação , Cultura Primária de Células , Vaccinia virus/metabolismo , Proteínas Virais/genética
2.
J Virol ; 87(8): 4623-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408614

RESUMO

Myxoma virus (MYXV) provides an important model for investigating host-pathogen interactions. Recent studies have also highlighted how mutations in transformed human cells can expand the host range of this rabbit virus. Although virus growth depends upon interactions between virus and host proteins, the nature of these interactions is poorly understood. To address this matter, we performed small interfering RNA (siRNA) screens for genes affecting MYXV growth in human MDA-MB-231 cells. By using siRNAs targeting the whole human genome (21,585 genes), a subset of human phosphatases and kinases (986 genes), and also a custom siRNA library targeting selected statistically significant genes ("hits") and nonsignificant genes ("nonhits") of the whole human genome screens (88 genes), we identified 711 siRNA pools that promoted MYXV growth and 333 that were inhibitory. Another 32 siRNA pools (mostly targeting the proteasome) were toxic. The overall overlap in the results was about 25% for the hits and 75% for the nonhits. These pro- and antiviral genes can be clustered into pathways and related groups, including well-established inflammatory and mitogen-activated protein kinase pathways, as well as clusters relating to ß-catenin and the Wnt signaling cascade, the cell cycle, and cellular metabolism. The validity of a subset of these hits was independently confirmed. For example, treating cells with siRNAs that might stabilize cells in G(1), or inhibit passage into S phase, stimulated MYXV growth, and these effects were reproduced by trapping cells at the G(1)/S boundary with an inhibitor of cyclin-dependent kinases 4/6. By using 2-deoxy-D-glucose and plasmids carrying the gene for phosphofructokinase, we also confirmed that infection is favored by aerobic glycolytic metabolism. These studies provide insights into how the growth state and structure of cells affect MYXV growth and how these factors might be manipulated to advantage in oncolytic virus therapy.


Assuntos
Interações Hospedeiro-Patógeno , Biologia Molecular/métodos , Myxoma virus/fisiologia , Interferência de RNA , Replicação Viral , Linhagem Celular , Genoma Humano , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...