Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Drug Metab Lett ; 14(2): 126-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34818997

RESUMO

BACKGROUND: A group of substituted benzothiazoles from a research project was found to have low microsomal clearance. However, these compounds had very high clearance in vivo. METHODS: In the present study, the clearance mechanism of two of the structural analogs, was investigated in vitro and in vivo. RESULTS: In vitro studies showed the formation of corresponding non-P450 dependent oxidative metabolites in S9, cytosol, and hepatocytes. The in vitro formation of these metabolites was observed in mice, rats, non-human primates, and humans. The dog did not form the corresponding metabolites in any of the matrices. Inhibition studies with S9 fraction and incubation with human recombinant aldehyde oxidase (AO) showed that the formation of the corresponding metabolites was AO dependent. To investigate the role of this pathway in vivo, mice were dosed with compound A and bile and plasma were analyzed. Most of the metabolites in bile contained the AO-dependent oxidized benzothiazole moiety, indicating that metabolism involving AO was probably the main pathway for clearance. The same metabolites were also observed circulating in plasma. Mass spectrometric analysis of the metabolite showed that the oxidation was on the benzothiazole moiety, but the exact position could not be identified. Isolation of the metabolite of compound A and analysis by NMR confirmed the structure of the metabolite as C2 carbon oxidation of the thiazole ring resulting in carboxamide moiety. Further comparison of both metabolites with corresponding authentic standards confirmed the structures. CONCLUSION: To our knowledge, such an observation of in vitro and in vivo oxidation of substituted benzothiazole by AO has not been reported before. The results helped the medicinal chemists design compounds that avoid AO-mediated metabolism and with better ADME property.


Assuntos
Aldeído Oxidase , Hepatócitos , Aldeído Oxidase/metabolismo , Animais , Benzotiazóis/metabolismo , Cães , Hepatócitos/metabolismo , Cinética , Taxa de Depuração Metabólica , Camundongos , Microssomos Hepáticos/metabolismo , Ratos
2.
Nat Struct Mol Biol ; 24(2): 108-113, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27991902

RESUMO

Current therapies to treat persistent pain and neuropathic pain are limited by poor efficacy, side effects and risk of addiction. Here, we present a novel class of potent selective, central nervous system (CNS)-penetrant potentiators of glycine receptors (GlyRs), ligand-gated ion channels expressed in the CNS. AM-1488 increased the response to exogenous glycine in mouse spinal cord and significantly reversed mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain. We obtained an X-ray crystal structure of human homopentameric GlyRα3 in complex with AM-3607, a potentiator of the same class with increased potency, and the agonist glycine, at 2.6-Å resolution. AM-3607 binds a novel allosteric site between subunits, which is adjacent to the orthosteric site where glycine binds. Our results provide new insights into the potentiation of cysteine-loop receptors by positive allosteric modulators and hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.


Assuntos
Receptores de Glicina/química , Regulação Alostérica , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Glicina/química , Células HEK293 , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Subunidades Proteicas/química
3.
J Med Chem ; 60(3): 1105-1125, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28001399

RESUMO

Current pain therapeutics suffer from undesirable psychotropic and sedative side effects, as well as abuse potential. Glycine receptors (GlyRs) are inhibitory ligand-gated ion channels expressed in nerves of the spinal dorsal horn, where their activation is believed to reduce transmission of painful stimuli. Herein, we describe the identification and hit-to-lead optimization of a novel class of tricyclic sulfonamides as allosteric GlyR potentiators. Initial optimization of high-throughput screening (HTS) hit 1 led to the identification of 3, which demonstrated ex vivo potentiation of glycine-activated current in mouse dorsal horn neurons from spinal cord slices. Further improvement of potency and pharmacokinetics produced in vivo proof-of-concept tool molecule 20 (AM-1488), which reversed tactile allodynia in a mouse spared-nerve injury (SNI) model. Additional structural optimization provided highly potent potentiator 32 (AM-3607), which was cocrystallized with human GlyRα3cryst to afford the first described potentiator-bound X-ray cocrystal structure within this class of ligand-gated ion channels (LGICs).


Assuntos
Receptores de Glicina/agonistas , Sulfonamidas/farmacologia , Animais , Células HEK293 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27899696

RESUMO

The transient receptor potential ankyrin 1 (TRPA1) channel has been implicated in pathophysiological processes that include asthma, cough, and inflammatory pain. Agonists of TRPA1 such as mustard oil and its key component allyl isothiocyanate (AITC) cause pain and neurogenic inflammation in humans and rodents, and TRPA1 antagonists have been reported to be effective in rodent models of pain. In our pursuit of TRPA1 antagonists as potential therapeutics, we generated AMG0902, a potent (IC90 of 300 nM against rat TRPA1), selective, brain penetrant (brain to plasma ratio of 0.2), and orally bioavailable small molecule TRPA1 antagonist. AMG0902 reduced mechanically evoked C-fiber action potential firing in a skin-nerve preparation from mice previously injected with complete Freund's adjuvant, supporting the role of TRPA1 in inflammatory mechanosensation. In vivo target coverage of TRPA1 by AMG0902 was demonstrated by the prevention of AITC-induced flinching/licking in rats. However, oral administration of AMG0902 to rats resulted in little to no efficacy in models of inflammatory, mechanically evoked hypersensitivity; and no efficacy was observed in a neuropathic pain model. Unbound plasma concentrations achieved in pain models were about 4-fold higher than the IC90 concentration in the AITC target coverage model, suggesting that either greater target coverage is required for efficacy in the pain models studied or TRPA1 may not contribute significantly to the underlying mechanisms.


Assuntos
Hiperalgesia/metabolismo , Inflamação/complicações , Ciática/complicações , Canais de Cátion TRPC/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Aminas/uso terapêutico , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Células CHO , Cricetulus , Ácidos Cicloexanocarboxílicos/uso terapêutico , Comportamento Exploratório/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Gabapentina , Hiperalgesia/tratamento farmacológico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naproxeno/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ciática/tratamento farmacológico , Canal de Cátion TRPA1 , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Ácido gama-Aminobutírico/uso terapêutico
5.
J Med Chem ; 59(6): 2794-809, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26942860

RESUMO

There has been significant interest in developing a transient receptor potential A1 (TRPA1) antagonist for the treatment of pain due to a wealth of data implicating its role in pain pathways. Despite this, identification of a potent small molecule tool possessing pharmacokinetic properties allowing for robust in vivo target coverage has been challenging. Here we describe the optimization of a potent, selective series of quinazolinone-based TRPA1 antagonists. High-throughput screening identified 4, which possessed promising potency and selectivity. A strategy focused on optimizing potency while increasing polarity in order to improve intrinsic clearance culminated with the discovery of purinone 27 (AM-0902), which is a potent, selective antagonist of TRPA1 with pharmacokinetic properties allowing for >30-fold coverage of the rat TRPA1 IC50 in vivo. Compound 27 demonstrated dose-dependent inhibition of AITC-induced flinching in rats, validating its utility as a tool for interrogating the role of TRPA1 in in vivo pain models.


Assuntos
Proteínas do Tecido Nervoso/antagonistas & inibidores , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Purinas/síntese química , Purinas/farmacologia , Quinazolinas/síntese química , Quinazolinas/farmacologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Animais , Transporte Biológico Ativo , Células CHO , Canais de Cálcio , Cricetulus , Cães , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Células Madin Darby de Rim Canino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Medição da Dor/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Canal de Cátion TRPA1
6.
J Med Chem ; 59(6): 2328-42, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26812066

RESUMO

Deregulation of the receptor tyrosine kinase mesenchymal epithelial transition factor (MET) has been implicated in several human cancers and is an attractive target for small molecule drug discovery. Herein, we report the discovery of compound 23 (AMG 337), which demonstrates nanomolar inhibition of MET kinase activity, desirable preclinical pharmacokinetics, significant inhibition of MET phosphorylation in mice, and robust tumor growth inhibition in a MET-dependent mouse efficacy model.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridonas/síntese química , Piridonas/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Animais , Antineoplásicos/farmacocinética , Cristalografia por Raios X , Desenho de Fármacos , Descoberta de Drogas , Humanos , Camundongos , Modelos Moleculares , Piridonas/farmacocinética , Relação Estrutura-Atividade , Triazóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 58(5): 2417-30, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25699405

RESUMO

The overexpression of c-Met and/or hepatocyte growth factor (HGF), the amplification of the MET gene, and mutations in the c-Met kinase domain can activate signaling pathways that contribute to cancer progression by enabling tumor cell proliferation, survival, invasion, and metastasis. Herein, we report the discovery of 8-fluorotriazolopyridines as inhibitors of c-Met activity. Optimization of the 8-fluorotriazolopyridine scaffold through the combination of structure-based drug design, SAR studies, and metabolite identification provided potent (cellular IC50 < 10 nM), selective inhibitors of c-Met with desirable pharmacokinetic properties that demonstrate potent inhibition of HGF-mediated c-Met phosphorylation in a mouse liver pharmacodynamic model.


Assuntos
Descoberta de Drogas , Neoplasias da Próstata/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinolinas/farmacologia , Triazóis/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Masculino , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Quinolinas/química , Quinolinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual , Triazóis/química , Triazóis/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Drug Metab Dispos ; 42(4): 707-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423753

RESUMO

The mammalian target of rapamycin (mTOR) is a protein kinase that shows key involvement in age-related disease and promises to be a target for treatment of cancer. In the present study, the elimination of potent ATP-competitive mTOR inhibitor 3-(6-amino-2-methylpyrimidin-4-yl)-N-(1H-pyrazol-3-yl)imidazo[1,2-b]pyridazin-2-amine (compound 1) is studied in bile duct-cannulated rats, and the metabolism of compound 1 in liver microsomes is compared across species. Compound 1 was shown to undergo extensive N-glucuronidation in bile duct-catheterized rats. N-glucuronides were detected on positions N1 (M2) and N2 (M1) of the pyrazole moiety as well as on the primary amine (M3). All three N-glucuronide metabolites were detected in liver microsomes of the rat, dog, and human, while primary amine glucuronidation was not detected in cynomolgus monkey. In addition, N1- and N2-glucuronidation showed strong species selectivity in vitro, with rat, dog, and human favoring N2-glucuronidation and monkey favoring N1-glucuronide formation. Formation of M1 in monkey liver microsomes also followed sigmoidal kinetics, singling out monkey as unique among the species with regard to compound 1 N-glucuronidation. In this respect, monkeys might not always be the best animal model for N-glucuronidation of uridine diphosphate glucuronosyltransferase (UGT) 1A9 or UGT1A1 substrates in humans. The impact of N-glucuronidation of compound 1 could be more pronounced in higher species such as monkey and human, leading to high clearance in these species. While compound 1 shows promise as a candidate for investigating the impact of pan-mTOR inhibition in vivo, opportunities may exist through medicinal chemistry efforts to reduce metabolic liability with the goal of improving systemic exposure.


Assuntos
Glucuronídeos/metabolismo , Compostos Heterocíclicos com 2 Anéis/metabolismo , Microssomos Hepáticos/enzimologia , Pirimidinas/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Cães , Feminino , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Cinética , Macaca fascicularis , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Espectrometria de Massas em Tandem
10.
Rapid Commun Mass Spectrom ; 28(2): 185-90, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24338966

RESUMO

RATIONALE: Although Desorption Electrospray Ionization (DESI) Mass Spectrometry Imaging (MSI) is uniquely suited for whole-body (WB) tissue distribution study of drugs, success in this area has been difficult. Here, we present WB tissue distribution studies using DESI-MSI and a new histological tissue-friendly solvent system. METHODS: Neonate pups were dosed subcutaneously (SC) with clozapine, compound 1, compound 2, or compound 3. Following euthanization by hypothermia, neonates underwent a transcardiac perfusion (saline) to remove blood. After cryosectioning, DESI-MSI was conducted for the WB tissue slides, followed sequentially by histological staining. RESULTS: Whole-body tissue imaging showed that clozapine and its N-oxide metabolite were distributed in significant amounts in the brain, spinal cord, liver, heart (ventricle), and lungs. Compound 1 was distributed mainly in the liver and muscle, and its mono-oxygenated metabolite was detected by DESI-MSI exclusively in the liver. Compound 2 was distributed mainly in the muscle and fatty tissue. Compound 3 was distributed mainly in fatty tissue and its metabolites were also mainly detected in the same tissue. CONCLUSIONS: The results demonstrate the successful application of DESI-MSI in whole-body tissue distribution studies of drugs and metabolites in combination with sequential histology staining for anatomy. The results also identified lipophilicity as the driving force in the tissue distribution of the three Amgen compounds.


Assuntos
Antipsicóticos/farmacocinética , Clozapina/farmacocinética , Espectrometria de Massas por Ionização por Electrospray/métodos , Imagem Corporal Total/métodos , Animais , Animais Recém-Nascidos , Feminino , Camundongos , Distribuição Tecidual
11.
J Med Chem ; 56(24): 10003-15, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24294969

RESUMO

Tankyrases (TNKS1 and TNKS2) are proteins in the poly ADP-ribose polymerase (PARP) family. They have been shown to directly bind to axin proteins, which negatively regulate the Wnt pathway by promoting ß-catenin degradation. Inhibition of tankyrases may offer a novel approach to the treatment of APC-mutant colorectal cancer. Hit compound 8 was identified as an inhibitor of tankyrases through a combination of substructure searching of the Amgen compound collection based on a minimal binding pharmacophore hypothesis and high-throughput screening. Herein we report the structure- and property-based optimization of compound 8 leading to the identification of more potent and selective tankyrase inhibitors 22 and 49 with improved pharmacokinetic properties in rodents, which are well suited as tool compounds for further in vivo validation studies.


Assuntos
Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Tanquirases/antagonistas & inibidores , Administração Oral , Disponibilidade Biológica , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Tanquirases/metabolismo
12.
J Med Chem ; 56(11): 4320-42, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23701517

RESUMO

Tankyrase (TNKS) is a poly-ADP-ribosylating protein (PARP) whose activity suppresses cellular axin protein levels and elevates ß-catenin concentrations, resulting in increased oncogene expression. The inhibition of tankyrase (TNKS1 and 2) may reduce the levels of ß-catenin-mediated transcription and inhibit tumorigenesis. Compound 1 is a previously described moderately potent tankyrase inhibitor that suffers from poor pharmacokinetic properties. Herein, we describe the utilization of structure-based design and molecular modeling toward novel, potent, and selective tankyrase inhibitors with improved pharmacokinetic properties (39, 40).


Assuntos
Benzimidazóis/síntese química , Oxazolidinonas/síntese química , Tanquirases/antagonistas & inibidores , Administração Oral , Animais , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Sítios de Ligação , Disponibilidade Biológica , Técnicas In Vitro , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Oxazolidinonas/farmacocinética , Oxazolidinonas/farmacologia , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
13.
Anal Bioanal Chem ; 405(8): 2635-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377112

RESUMO

Hepatotoxicity of drug candidates is one of the major concerns in drug screening in early drug discovery. Detection of hepatic oxidative stress can be an early indicator of hepatotoxicity and benefits drug selection. The glutathione (GSH) and glutathione disulfide (GSSG) pair, as one of the major intracellular redox regulating couples, plays an important role in protecting cells from oxidative stress that is caused by imbalance between prooxidants and antioxidants. The quantitative determination of the GSSG/GSH ratios and the concentrations of GSH and GSSG have been used to indicate oxidative stress in cells and tissues. In this study, we tested the possibility of using the biliary GSSG/GSH ratios as a biomarker to reflect hepatic oxidative stress and drug toxicity. Four compounds that are known to alter GSH and GSSG levels were tested in this study. Diquat (diquat dibromide monohydrate) and acetaminophen were administered to rats. Paraquat and tert-butyl hydroperoxide were administered to mice to induce changes of biliary GSH and GSSG. The biliary GSH and GSSG were quantified using calibration curves prepared with artificial bile to account for any bile matrix effect in the LC-MS analysis and to avoid the interference of endogenous GSH and GSSG. With four examples (in rats and mice) of drug-induced changes in the kinetics of the biliary GSSG/GSH ratios, this study showed the potential for developing an exposure response index based on biliary GSSG/GSH ratios for predicting hepatic oxidative stress.


Assuntos
Bile/química , Avaliação Pré-Clínica de Medicamentos/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Dissulfeto de Glutationa/análise , Glutationa/análise , Fígado/efeitos dos fármacos , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Animais , Bile/metabolismo , Diquat/efeitos adversos , Diquat/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Masculino , Camundongos , Oxirredução , Paraquat/efeitos adversos , Paraquat/metabolismo , Preparações Farmacêuticas/metabolismo , Ratos , Ratos Sprague-Dawley , terc-Butil Hidroperóxido/efeitos adversos , terc-Butil Hidroperóxido/metabolismo
14.
Drug Metab Dispos ; 41(1): 238-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23118327

RESUMO

Compound 1 [(E)-4-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1S,4S)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], a new, potent, selective anaplastic lymphoma kinase (ALK) inhibitor with potential application for the treatment of cancer, was selected as candidate to advance into efficacy studies in mice. However, the compound underwent mouse-specific enzymatic hydrolysis in plasma to a primary amine product (M1). Subsequent i.v. pharmacokinetics studies in mice showed that compound 1 had high clearance (CL) and a short half-life. Oral dose escalation studies in mice indicated that elimination of compound 1 was saturable, with higher doses achieving sufficient exposures above in vitro IC(50). Chemistry efforts to minimize hydrolysis resulted in the discovery of several analogs that were stable in mouse plasma. Three were taken in vivo into mice and showed decreased CL corresponding to increased in vitro stability in plasma. However, the more stable compounds also showed reduced potency against ALK. Kinetic studies in NADPH-fortified and unfortified microsomes and plasma produced submicromolar K(m) values and could help explain the saturation of elimination observed in vivo. Predictions of CL based on kinetics from hydrolysis and NADPH-dependent pathways produced predicted hepatic CL values of 3.8, 3.0, 1.6, and 1.2 l/h⋅kg for compound 1, compound 2 [(E)-3,5-difluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], compound 3 [(E)-3-chloro-5-fluoro-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)benzamide], and compound 4 [(E)-N-(6-((4-(2-hydroxypropan-2-yl)piperidin-1-yl)methyl)-1-((1s,4s)-4-(isopropylcarbamoyl)cyclohexyl)-1H-benzo[d]imidazol-2(3H)-ylidene)-3-(trifluoromethyl)benzamide], respectively. The in vivo observed CLs for compounds 1, 2, 3, and 4 were 5.52, 3.51, 2.14, and 2.66 l/h⋅kg, respectively. These results indicate that in vitro metabolism kinetic data, incorporating contributions from both hydrolysis and NADPH-dependent metabolism, could be used to predict the systemic CL of compounds cleared via hydrolytic pathways provided that the in vitro assays thoroughly investigate the processes, including the contribution of other metabolic pathways and the possibility of saturation kinetics.


Assuntos
Inibidores de Proteínas Quinases/farmacocinética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Área Sob a Curva , Cromatografia Líquida , Hidrólise , Concentração Inibidora 50 , Masculino , Camundongos , Inibidores de Proteínas Quinases/sangue , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
15.
Bioorg Med Chem Lett ; 22(15): 4967-74, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22765895

RESUMO

mTOR is a critical regulator of cellular signaling downstream of multiple growth factors. The mTOR/PI3K/AKT pathway is frequently mutated in human cancers and is thus an important oncology target. Herein we report the evolution of our program to discover ATP-competitive mTOR inhibitors that demonstrate improved pharmacokinetic properties and selectivity compared to our previous leads. Through targeted SAR and structure-guided design, new imidazopyridine and imidazopyridazine scaffolds were identified that demonstrated superior inhibition of mTOR in cellular assays, selectivity over the closely related PIKK family and improved in vivo clearance over our previously reported benzimidazole series.


Assuntos
Inibidores de Proteínas Quinases/química , Piridazinas/química , Piridinas/química , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Benzimidazóis/química , Sítios de Ligação , Ligação Competitiva , Cristalografia por Raios X , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Imidazóis/química , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacocinética , Estrutura Terciária de Proteína , Piridazinas/síntese química , Piridazinas/farmacocinética , Piridinas/síntese química , Piridinas/farmacocinética , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo
16.
Anal Chem ; 84(12): 5439-45, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22663341

RESUMO

Mass spectrometric imaging (MSI) has emerged as a powerful technique to obtain spatial arrangement of individual molecular ions in animal tissues. Ambient desorption electrospray ionization (DESI) technique is uniquely suited for such imaging experiments, as it can be performed on animal tissues in their native environment without prior treatments. Although MSI has become a rapid growing technique for localization of proteins, lipids, drugs, and endogenous compounds in different tissues, quantification of imaged targets has not been explored extensively. Here we present a novel MSI approach for localization and quantification of drugs in animal thin tissue sections. DESI-MSI using an Orbitrap mass analyzer in full scan mode was performed on 6 µm coronal brain sections from rats that were administered 2.5 mg/kg clozapine. Clozapine was localized and quantified in individual brain sections 45 min postdose. External calibration curves were prepared by micropipetting standards with internal standard (IS) on top of the tissues, and average response factors were calculated for the scans in which both clozapine and IS were detected. All response factors were normalized to area units. Quantifications from DESI-MSI revealed 0.2-1.2 ng of clozapine in individual brain sections, results that were further confirmed by extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis.


Assuntos
Encéfalo/metabolismo , Clozapina/análise , Imagem Molecular/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Calibragem , Clozapina/metabolismo , Metabolismo dos Lipídeos , Imagem Molecular/normas , Ratos , Padrões de Referência , Contagem de Cintilação , Espectrometria de Massas por Ionização por Electrospray/normas
17.
J Med Chem ; 55(14): 6523-40, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22734674

RESUMO

A class of 2-acyliminobenzimidazoles has been developed as potent and selective inhibitors of anaplastic lymphoma kinase (ALK). Structure based design facilitated the rapid development of structure-activity relationships (SAR) and the optimization of kinase selectivity. Introduction of an optimally placed polar substituent was key to solving issues of metabolic stability and led to the development of potent, selective, orally bioavailable ALK inhibitors. Compound 49 achieved substantial tumor regression in an NPM-ALK driven murine tumor xenograft model when dosed qd. Compounds 36 and 49 show favorable potency and PK characteristics in preclinical species indicative of suitability for further development.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Descoberta de Drogas , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Administração Oral , Quinase do Linfoma Anaplásico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Disponibilidade Biológica , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Imidazóis/farmacocinética , Imidazóis/farmacologia , Concentração Inibidora 50 , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Ratos , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Especificidade por Substrato
18.
Drug Metab Dispos ; 40(7): 1429-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22517972

RESUMO

CYP3A4-mediated biotransformation of (R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-N-(pyridin-3-ylmethyl)-2-(4-(trifluoromethoxy)phenyl)acetamide (AMG 487) was previously shown to generate an inhibitory metabolite linked to dose- and time-dependent pharmacokinetics in humans. Although in vitro activity loss assays failed to demonstrate CYP3A4 time-dependent inhibition (TDI) with AMG 487, its M2 phenol metabolite readily produced TDI when remaining activity was assessed using either midazolam or testosterone (K(I) = 0.73-0.74 µM, k(inact) = 0.088-0.099 min(-1)). TDI investigations using an IC(50) shift method successfully produced inhibition attributable to AMG 487, but only when preincubations were extended from 30 to 90 min. The shift magnitude was ∼3× for midazolam activity, but no shift was observed for testosterone activity. Subsequent partition ratio determinations conducted for M2 using recombinant CYP3A4 showed that inactivation was a relatively inefficient process (r = 36). CYP3A4-mediated biotransformation of [(3)H]M2 in the presence of GSH led to identification of two new metabolites, M4 and M5, which shifted focus away from M2 being directly responsible for TDI. M4 (hydroxylated M2) was further metabolized to form reactive intermediates that, upon reaction with GSH, produced isomeric adducts, collectively designated M5. Incubations conducted in the presence of [(18)O]H(2)O confirmed incorporation of oxygen from O(2) for the majority of M4 and M5 formed (>75%). Further evidence of a primary role for M4 in CYP3A4 TDI was generated by protein labeling and proteolysis experiments, in which M4 was found to be covalently bound to Cys239 of CYP3A4. These investigations confirmed a primarily role for M4 in CYP3A4 inactivation, suggesting that a more complex metabolic pathway was responsible for generation of inhibitory metabolites affecting AMG 487 human pharmacokinetics.


Assuntos
Acetamidas/farmacologia , Acetamidas/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Pirimidinonas/farmacologia , Pirimidinonas/farmacocinética , Receptores CXCR3/antagonistas & inibidores , Biotransformação , Humanos , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Midazolam/farmacocinética , Oxigênio/metabolismo , Proteólise , Quinonas/farmacocinética , Receptores CXCR3/metabolismo , Testosterona/metabolismo , Testosterona/farmacocinética
19.
Rapid Commun Mass Spectrom ; 26(3): 320-6, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22223319

RESUMO

Metabolite identification is an important part of the drug discovery and development process. High sensitivity is necessary to identify metabolic products in vitro and in vivo. The most common method utilizes standard high-performance liquid chromatography (4.6 mm i.d. column and 1 mL/min flow rate) coupled to tandem mass spectrometry (HPLC/MS/MS). We have developed a method that utilizes a nano-LC system coupled to a high-resolution tandem mass spectrometer to identify metabolites from in vitro and in vivo samples. Using this approach, we were able to increase the sensitivity of analysis by approximately 1000-fold over HPLC/MS. In vitro samples were analyzed after simple acetonitrile precipitation, centrifugation, and dilution. The significant improvement in sensitivity enabled us to conduct experiments at very low substrate concentrations (0.01 µM), and very low incubation volumes (20 µL). In vivo samples were injected after simple dilution without any pre-purification. All the metabolites identified by conventional HPLC/MS/MS were also identified using the nano-LC method. This study demonstrates a very sensitive approach to identifying phase I and II metabolites with throughput and separation equivalent to the standard HPLC/MS/MS method.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Haplorrinos , Camundongos , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/química , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Bioorg Med Chem Lett ; 21(7): 2064-70, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21376583

RESUMO

mTOR is part of the PI3K/AKT pathway and is a central regulator of cell growth and survival. Since many cancers display mutations linked to the mTOR signaling pathway, mTOR has emerged as an important target for oncology therapy. Herein, we report the discovery of triazine benzimidazole inhibitors that inhibit mTOR kinase activity with up to 200-fold selectivity over the structurally homologous kinase PI3Kα. When tested in a panel of cancer cell lines displaying various mutations, a selective inhibitor from this series inhibited cellular proliferation with a mean IC(50) of 0.41 µM. Lead compound 42 demonstrated up to 83% inhibition of mTOR substrate phosphorylation in a murine pharmacodynamic model.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas , Serina-Treonina Quinases TOR/antagonistas & inibidores , Triazinas/farmacologia , Benzimidazóis/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Modelos Moleculares , Relação Estrutura-Atividade , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...