Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(37): eadh0831, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703359

RESUMO

The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Hepatócitos , Inflamação/tratamento farmacológico
2.
G3 (Bethesda) ; 8(2): 567-575, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29223977

RESUMO

Caenorhabditis elegans are typically cultured in a monoxenic medium consisting of live bacteria. However, this introduces a secondary organism to experiments, and restricts the manipulation of the nutritional environment. Due to the intricate link between genes and environment, greater control and understanding of nutritional factors are required to push the C. elegans field into new areas. For decades, attempts to develop a chemically defined, axenic medium as an alternative for culturing C. elegans have been made. However, the mechanism by which the filter feeder C. elegans obtains nutrients from these liquid media is not known. Using a fluorescence-activated cell sorting based approach, we demonstrate growth in all past axenic C. elegans media to be dependent on the presence of previously unknown particles. This particle requirement of C. elegans led to development of liposome-based, nanoparticle culturing that allows full control of nutrients delivered to C. elegans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Material Particulado/farmacologia , Animais , Caenorhabditis elegans/genética , Meios de Cultura/química , Lipossomos/química , Nanopartículas/química , Tamanho da Partícula , Material Particulado/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...