Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Radiopharm Chem ; 9(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696063

RESUMO

BACKGROUND: Parkinson's disease is a neurodegenerative disorder that is characterized by a degeneration of the dopaminergic system. Dopamine transporter (DAT) positron emission tomography (PET) imaging has emerged as a powerful and non-invasive method to quantify dopaminergic function in the living brain. The PET radioligand, [18F]FE-PE2I, a cocaine chemical derivative, has shown promising properties for in vivo PET imaging of DAT, including high affinity and selectivity for DAT, excellent brain permeability, and favorable metabolism. The aim of the current study was to scale up the production of [18F]FE-PE2I to fulfil the increasing clinical demand for this tracer. RESULTS: Thus, a fully automated and GMP-compliant production procedure has been developed using a commercially available radiosynthesis module GE TRACERLab FX2 N. [18F]FE-PE2I was produced with a radiochemical yield of 39 ± 8% (n = 4, relative [18F]F- delivered to the module). The synthesis time was 70 min, and the molar activity was 925.3 ± 763 GBq/µmol (250 ± 20 Ci/µmol). The produced [18F]FE-PE2I was stable over 6 h at room temperature. CONCLUSION: The protocol reliably provides a sterile and pyrogen-free GMP-compliant product.

2.
EJNMMI Radiopharm Chem ; 8(1): 41, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991639

RESUMO

BACKGROUND: The Affibody molecule, ABY-025, has demonstrated utility to detect human epidermal growth factor receptor 2 (HER2) in vivo, either radiolabelled with indium-111 (111In) or gallium-68 (68Ga). Using the latter, 68Ga, is preferred due to its use in positron emission tomography with superior resolution and quantifying capabilities in the clinical setting compared to 111In. For an ongoing phase II study (NCT05619016) evaluating ABY-025 for detecting HER2-low lesions and selection of patients for HER2-targeted treatment, the aim was to optimize an automated and cGMP-compliant radiosynthesis of [68Ga]Ga-ABY-025. [68Ga]Ga-ABY-025 was produced on a synthesis module, Modular-Lab PharmTracer (Eckert & Ziegler), commonly used for 68Ga-labelings. The radiotracer has previously been radiolabeled on this module, but to streamline the production, the method was optimized. Steps requiring manual interactions to the radiolabeling procedure were minimized including a convenient and automated pre-concentration of the 68Ga-eluate and a simplified automated final formulation procedure. Every part of the radiopharmaceutical production was carefully developed to gain robustness and to avoid any operator bound variations to the manufacturing. The optimized production method was successfully applied for 68Ga-labeling of another radiotracer, verifying its versatility as a universal and robust method for radiosynthesis of Affibody-based peptides. RESULTS: A simplified and optimized automated cGMP-compliant radiosynthesis method of [68Ga]Ga-ABY-025 was developed. With a decay corrected radiochemical yield of 44 ± 2%, a radiochemical purity (RCP) of 98 ± 1%, and with an RCP stability of 98 ± 1% at 2 h after production, the method was found highly reproducible. The production method also showed comparable results when implemented for radiolabeling another similar peptide. CONCLUSION: The improvements made for the radiosynthesis of [68Ga]Ga-ABY-025, including introducing a pre-concentration of the 68Ga-eluate, aimed to utilize the full potential of the 68Ge/68Ga generator radioactivity output, thereby reducing radioactivity wastage. Furthermore, reducing the number of manually performed preparative steps prior to the radiosynthesis, not only minimized the risk of potential human/operator errors but also enhanced the process' robustness. The successful application of this optimized radiosynthesis method to another similar peptide underscores its versatility, suggesting that our method can be adopted for 68Ga-labeling radiotracers based on Affibody molecules in general. TRIAL REGISTRATION: NCT, NCT05619016, Registered 7 November 2022, https://clinicaltrials.gov/study/NCT05619016?term=HER2&cond=ABY025&rank=1.

3.
EJNMMI Res ; 10(1): 106, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960353

RESUMO

BACKGROUND: Albumin is commonly used as a carrier platform for drugs to extend their circulatory half-lives and influence their uptake into tissues that have altered permeability to the plasma protein. The albumin-binding domain (ABD) protein, which binds in vivo to serum albumin with high affinity, has proven to be a versatile scaffold for engineering biopharmaceuticals with a range of binding capabilities. In this study, the ABD protein equipped with a mal-DOTA chelator (denoted ABY-028) was radiolabeled with gallium-68 (68Ga). This novel radiotracer was then used together with positron emission tomography (PET) imaging to examine variations in the uptake of the ABD-albumin conjugate with variations in endothelial permeability. RESULTS: ABY-028, produced by peptide synthesis in excellent purity and stored at - 20 °C, was stable for 24 months (end of study). [68Ga]ABY-028 could be obtained with labeling yields of > 80% and approximately 95% radiochemical purity. [68Ga]ABY-028 distributed in vivo with the plasma pool, with highest radioactivity in the heart ventricles and major vessels of the body, a gradual transport over time from the circulatory system into tissues and elimination via the kidneys. Early [68Ga]ABY-028 uptake differed in xenografts with different vascular properties: mean standard uptake values (SUVmean) were initially 5 times larger in FaDu than in A431 xenografts, but the difference decreased to 3 after 1 h. Cutaneously administered, vasoactive nitroglycerin increased radioactivity in the A431 xenografts. Heterogeneity in the levels and rates of increases of radioactivity uptake was observed in sub-regions of individual MMTV-PyMT mammary tumors and in FaDu xenografts. Higher uptake early after tracer administration could be observed in lower metabolic regions. Fluctuations in the increased permeability for the tracer across the blood-brain-barrier (BBB) direct after experimentally induced stroke were monitored by PET and the increased uptake was confirmed by ex vivo phosphorimaging. CONCLUSIONS: [68Ga]ABY-028 is a promising new tracer for visualization of changes in albumin uptake due to disease- and pharmacologically altered vascular permeability and their potential effects on the passive uptake of targeting therapeutics based on the ABD protein technology.

4.
Int J Nanomedicine ; 15: 6137-6152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884268

RESUMO

BACKGROUND: Beyond clinical atherosclerosis imaging of vessel stenosis and plaque morphology, early detection of inflamed atherosclerotic lesions by molecular imaging could improve risk assessment and clinical management in high-risk patients. To identify inflamed atherosclerotic lesions by molecular imaging in vivo, we studied the specificity of our radiotracer based on maleylated (Mal) human serum albumin (HSA), which targets key features of unstable atherosclerotic lesions. MATERIALS AND METHODS: Mal-HSA was radiolabeled with a positron-emitting metal ion, zirconium-89 (89Zr4+). The targeting potential of this probe was compared with unspecific 89Zr-HSA and 18F-FDG in an experimental model of atherosclerosis (Apoe-/- mice, n=22), and compared with wild-type (WT) mice (C57BL/6J, n=21) as controls. RESULTS: PET/MRI, gamma counter measurements, and autoradiography showed the accumulation of 89Zr-Mal-HSA in the atherosclerotic lesions of Apoe-/- mice. The maximum standardized uptake values (SUVmax) for 89Zr-Mal-HSA at 16 and 20 weeks were 26% and 20% higher (P<0.05) in Apoe-/- mice than in control WT mice, whereas no difference in SUVmax was observed for 18F-FDG in the same animals. 89Zr-Mal-HSA uptake in the aorta, as evaluated by a gamma counter 48 h postinjection, was 32% higher (P<0.01) for Apoe-/- mice than in WT mice, and the aorta-to-blood ratio was 8-fold higher (P<0.001) for 89Zr-Mal-HSA compared with unspecific 89Zr-HSA. HSA-based probes were mainly distributed to the liver, spleen, kidneys, bone, and lymph nodes. The phosphor imaging autoradiography (PI-ARG) results corroborated the PET and gamma counter measurements, showing higher accumulation of 89Zr-Mal-HSA in the aortas of Apoe-/- mice than in WT mice (9.4±1.4 vs 0.8±0.3%; P<0.001). CONCLUSION: 89Zr radiolabeling of Mal-HSA probes resulted in detectable activity in atherosclerotic lesions in aortas of Apoe-/- mice, as demonstrated by quantitative in vivo PET/MRI. 89Zr-Mal-HSA appears to be a promising diagnostic tool for the early identification of macrophage-rich areas of inflammation in atherosclerosis.


Assuntos
Aterosclerose/diagnóstico por imagem , Maleatos/química , Imagem Molecular/métodos , Radioisótopos , Albumina Sérica Humana/química , Zircônio , Animais , Aorta/diagnóstico por imagem , Aorta/patologia , Aterosclerose/patologia , Autorradiografia , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18 , Humanos , Marcação por Isótopo , Macrófagos/patologia , Imageamento por Ressonância Magnética , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/patologia , Tomografia por Emissão de Pósitrons , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Zircônio/química , Zircônio/farmacocinética
5.
Front Physiol ; 9: 1624, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524296

RESUMO

The in vivo response to lipopolysaccharide (LPS) occurs rapidly and has profound physiological and metabolic effects. The hypoxia inducible (HIF) transcription factor is an intrinsic and essential part of inflammation, and is induced by LPS. To determine the importance of the HIF response in regulating metabolism following an LPS response, glucose uptake was quantified in a time dependent manner in mice lacking HIF-1α in myeloid cells. We found that deletion of HIF-1α has an acute protective effect on LPS-induced hypoglycemia. Furthermore, reduced glucose uptake was observed in the heart and brown fat, in a time dependent manner, following loss of HIF-1α. To determine the physiological significance of these findings, cardiovascular, body temperature, and blood pressure changes were subsequently quantified in real time using radiotelemetry measurements. These studies reveal the temporal aspects of HIF-1α as a regulator of the metabolic response to acute LPS-induced inflammation.

6.
EJNMMI Res ; 6(1): 58, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27388754

RESUMO

BACKGROUND: Though overexpression of epidermal growth factor receptor (EGFR) in several forms of cancer is considered to be an important prognostic biomarker related to poor prognosis, clear correlations between biomarker assays and patient management have been difficult to establish. Here, we utilize a targeting directly followed by a non-targeting tracer-based positron emission tomography (PET) method to examine some of the aspects of determining specific EGFR binding in tumors. METHODS: The EGFR-binding Affibody molecule ZEGFR:2377 and its size-matched non-binding control ZTaq:3638 were recombinantly fused with a C-terminal selenocysteine-containing Sel-tag (ZEGFR:2377-ST and ZTaq:3638-ST). The proteins were site-specifically labeled with DyLight488 for flow cytometry and ex vivo tissue analyses or with (11)C for in vivo PET studies. Kinetic scans with the (11)C-labeled proteins were performed in healthy mice and in mice bearing xenografts from human FaDu (squamous cell carcinoma) and A431 (epidermoid carcinoma) cell lines. Changes in tracer uptake in A431 xenografts over time were also monitored, followed by ex vivo proximity ligation assays (PLA) of EGFR expressions. RESULTS: Flow cytometry and ex vivo tissue analyses confirmed EGFR targeting by ZEGFR:2377-ST-DyLight488. [Methyl-(11)C]-labeled ZEGFR:2377-ST-CH3 and ZTaq:3638-ST-CH3 showed similar distributions in vivo, except for notably higher concentrations of the former in particularly the liver and the blood. [Methyl-(11)C]-ZEGFR:2377-ST-CH3 successfully visualized FaDu and A431 xenografts with moderate and high EGFR expression levels, respectively. However, in FaDu tumors, the non-specific uptake was large and sometimes equally large, illustrating the importance of proper controls. In the A431 group observed longitudinally, non-specific uptake remained at same level over the observation period. Specific uptake increased with tumor size, but changes varied widely over time in individual tumors. Total (membranous and cytoplasmic) EGFR in excised sections increased with tumor growth. There was no positive correlation between total EGFR and specific tracer uptake, which, since ZEGFR:2377 binds extracellularly and is slowly internalized, indicates a discordance between available membranous and total EGFR expression levels. CONCLUSIONS: Same-day in vivo dual tracer imaging enabled by the Sel-tag technology and (11)C-labeling provides a method to non-invasively monitor membrane-localized EGFR as well as factors affecting non-specific uptake of the PET ligand.

7.
EJNMMI Res ; 4(1): 17, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24670127

RESUMO

BACKGROUND: Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates. The aim of this study was to investigate the pharmacokinetics and angiogenesis imaging abilities of the VEGFR2-targeting positron emission tomography (PET) tracer (R)-[11C]PAQ. METHODS: (R)-[11C]PAQ was evaluated in the mouse mammary tumour virus-polyoma middle T (MMTV-PyMT) model of metastatic breast cancer. Mice at different stages of disease progression were imaged with (R)-[11C]PAQ PET, and results were compared to those obtained with [18 F]FDG PET and magnetic resonance imaging. (R)-[11C]PAQ uptake levels were also compared to ex vivo immunofluorescence analysis of tumour- and angiogenesis-specific biomarkers. Additional pharmacokinetic studies were performed in rat and mouse. RESULTS: A heterogeneous uptake of (R)-[11C]PAQ was observed in the tumorous mammary glands. Ex vivo analysis confirmed the co-localization of areas with high radioactivity uptake and areas with elevated levels of VEGFR2. In some animals, a high focal uptake was observed in the lungs. The lung uptake correlated to metastatic and angiogenic activity, but not to uptake of [18 F]FDG PET. The pharmacokinetic studies revealed a limited metabolism and excretion during the 1-h scan and a distribution of radioactivity mainly to the liver, kidneys and lungs. In rat, a high uptake was additionally observed in adrenal and parathyroid glands. CONCLUSION: The results indicate that (R)-[11C]PAQ is a promising imaging biomarker for visualization of angiogenesis, based on VEGFR2 expression, in primary tumours and during metastasis development.

8.
EJNMMI Res ; 4(1): 34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116108

RESUMO

BACKGROUND: Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. METHODS: [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). RESULTS: We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. CONCLUSIONS: We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular proteomics. These results provide support for using preclinical [(18)F] FDG-PET imaging in early, non-invasive monitoring of the effects of MEK and perhaps other Ras/MAPK signaling pathway inhibitors, which should facilitate a wider implementation of clinical [(18)F] FDG-PET to optimize their clinical use.

9.
EJNMMI Res ; 3(1): 67, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24041012

RESUMO

BACKGROUND: Positron emission tomography (PET) with [2-18 F]-2-fluoro-2-deoxy-D-glucose ([18 F]FDG-PET) was acquired at multiple time-points a) to monitor the early response to RO5126766 (CH5126766) in xenograft models b) to evaluate non-invasive small animal [18 F]FDG-PET imaging as a biomarker for MEK inhibitors for translation into dose-finding studies in cancer patients and c) to explore the underlying mechanism related to FDG uptake in tumors treated with RO5126766. METHODS: [18 F]FDG uptake was studied in HCT116 (K-ras), COLO205 (B-raf) mutants and COLO320DM (wild type) xenografts from day 0 to 3 of RO5126766 treatment using a microPET Focus 120 and complemented with in vitro incubations, ex-vivo phosphor imaging and immunohistochemical (IHC) analyses. RESULTS: In the HCT116 (K-ras) and COLO205 (B-raf) mutant xenografts, significant decreases in [18 F]FDG uptake were detected in vivo on day 1 with 0.3 mg/kg and ex vivo on day 3 with 0.1 mg/kg RO5126766. [18 F]FDG changes correlated with decreases in tumor cells proliferation (Ki-67) and with changes in expression levels of GLUT1. No effects were observed in drug resistant COLO320DM cells. The cellular fractionation and Western blotting analyses suggested that the change of [18 F]FDG uptake associated with RO5126766 is due to translocation of GLUT1 from membrane to cytosol, similar to the results reported in the literature with EGFR tyrosine kinase inhibitors, which also target the MAPK pathway. CONCLUSIONS: RO5126766 inhibition resulted in a rapid time - and dose - dependent decline in [18 F]FDG uptake in both mutant xenografts. These results strongly resemble the clinical observations obtained with MEK/Raf inhibitors support the use of preclinical [18 F]FDG-PET as a translational tool for decision support in preclinical and early clinical development of MEK inhibitors.

10.
J Nucl Med ; 54(10): 1804-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24003078

RESUMO

UNLABELLED: Several tracers have been evaluated as probes for noninvasive epidermal growth factor receptor (EGFR) quantification with PET. One of the most promising candidates is the (11)C-labeled analog of the EGFR tyrosine kinase inhibitor PD153035. However, previous in vitro studies indicated extensive metabolism of the tracer, which could be disadvantageous for the assessment of receptor density in vivo. The aim of this study was to investigate the in vivo metabolism of [(11)C]PD153035 to determine whether alterations in metabolite formation are accompanied by changes in biodistribution and tumor uptake. METHODS: EGFR-overexpressing human epidermoid carcinoma xenografts in rats were used in all examinations of tumor uptake. Cytochrome P450 enzymes of subfamilies CYP2D and CYP3A were inhibited before intravenous injection of [(11)C]PD153035 into healthy and tumor-bearing male rats. Samples were taken from arterial blood and urine, and the occurrence of radioactive metabolites was assessed with radio-high-performance liquid chromatography. Dynamic PET examinations of healthy and tumor-bearing animals were performed. In 1 rat, the effect of local intraarterial administration was examined. RESULTS: [(11)C]PD153035 labeled at position 6 was metabolized extensively in vivo in male rats, resulting in very low levels of the intact tracer in plasma only minutes after injection. The major identified radiolabeled metabolites found were the N-oxide and metabolites arising from O demethylation at position 7. They were reduced by inhibition of CYP2D and CYP3A enzymes. PET revealed enzyme activity-dependent changes in the radioactivity distribution in the liver and tumors. Local administration of [(11)C]PD153035 greatly increased radioactivity levels in the adjacent tumor compared with levels typically found after intravenous administration. The highest tumor-to-muscle ratio at 60 min after intravenous injection was found in the untreated animals, whereas the overall highest ratio was found in the tumor near the intraarterial administration site. CONCLUSION: We suggest that the metabolism of [(11)C]PD153035 should be taken into consideration when this tracer is used to quantify EGFR expression, as our results indicated that the distribution of radioactivity to EGFR-overexpressing tumors was affected by the rate of metabolism and the route of administration.


Assuntos
Receptores ErbB/metabolismo , Sondas Moleculares/farmacocinética , Quinazolinas/farmacocinética , Animais , Transporte Biológico , Radioisótopos de Carbono , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Sondas Moleculares/metabolismo , Tomografia por Emissão de Pósitrons , Quinazolinas/metabolismo , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
11.
Circ Res ; 105(3): 260-70, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19590046

RESUMO

RATIONALE: We have previously shown that angiomotin (Amot) is essential for endothelial cell migration during mouse embryogenesis. However, approximately 5% of Amot knockout mice survived without any detectable vascular defects. Angiomotin-like protein 1 (AmotL1) potentially compensates for the absence of Amot as it is 62% homologous to Amot and exhibits similar expression pattern in endothelial cells. OBJECTIVE: Here, we report the identification of a novel isoform of AmotL1 that controls endothelial cell polarization and directional migration. METHODS AND RESULTS: Small interfering RNA-mediated silencing of AmotL1 in mouse aortic endothelial cells caused a significant reduction in migration. In confluent mouse pancreatic islet endothelial cells (MS-1), AmotL1 colocalized with Amot to tight junctions. Small interfering RNA knockdown of both Amot and AmotL1 in MS-1 cells exhibited an additive effect on increasing paracellular permeability compared to that of knocking down either Amot or AmotL1, indicating both proteins were required for proper tight junction activity. Moreover, as visualized using high-resolution 2-photon microscopy, the morpholino-mediated knockdown of amotl1 during zebrafish embryogenesis resulted in vascular migratory defect of intersegmental vessels with strikingly decreased junction stability between the stalk cells and the aorta. However, the phenotype was quite distinct from that of amot knockdown which affected polarization of the tip cells of intersegmental vessels. Double knockdown resulted in an additive phenotype of depolarized tip cells with no or decreased connection of the stalk cells to the dorsal aorta. CONCLUSIONS: These results cumulatively validate that Amot and AmotL1 have similar effects on endothelial migration and tight junction formation in vitro. However, in vivo Amot appears to control the polarity of vascular tip cells whereas AmotL1 mainly affects the stability of cell-cell junctions of the stalk cells.


Assuntos
Polaridade Celular/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Angiomotinas , Proteína 1 Semelhante a Angiopoietina , Animais , Animais Geneticamente Modificados , Bovinos , Adesão Celular/fisiologia , Linhagem Celular , Movimento Celular/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Domínios PDZ/genética , Isoformas de Proteínas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
12.
Eur J Nucl Med Mol Imaging ; 36(8): 1283-95, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19288096

RESUMO

PURPOSE: (R,S)-N-(4-Bromo-2-fluorophenyl)-6-methoxy-7-((1-methyl-3-piperidinyl)methoxy)-4-quinazolinamine (PAQ) is a tyrosine kinase inhibitor with high affinity for the vascular endothelial growth factor receptor 2 (VEGFR-2), which plays an important role in tumour angiogenesis. The aim of this work was to develop and evaluate in mice the (11)C-labelled analogue as an in vivo tracer for VEGFR-2 expression in solid tumours. METHODS: [(11)C]PAQ was synthesized by an N-methylation of desmethyl-PAQ using [(11)C]methyl iodide. The tracer's pharmacokinetic properties and its distribution in both subcutaneous and intraperitoneal tumour models were evaluated with positron emission tomography (PET). [(18)F]FDG was used as a reference tracer for tumour growth. PET results were corroborated by ex vivo and in vitro phosphor imaging and immunohistochemical analyses. RESULTS: In vitro assays and PET in healthy animals revealed low tracer metabolism, limited excretion over 60 min and a saturable and irreversible binding. Radiotracer uptake in subcutaneous tumour masses was low, while focal areas of high uptake (up to 8% ID/g) were observed in regions connecting the tumour to the host. Uptake was similarly high but more distributed in tumours growing within the peritoneum. The pattern of radiotracer uptake was generally different from that of the metabolic tracer [(18)F]FDG and correlated well with variations in VEGFR-2 expression determined ex vivo by immunohistochemical analysis. CONCLUSION: These results suggest that [(11)C]PAQ has potential as a noninvasive PET tracer for in vivo imaging of VEGFR-2 expression in angiogenic "hot spots".


Assuntos
Piperidinas/síntese química , Quinazolinas/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise , Animais , Transporte Biológico , Radioisótopos de Carbono/química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Imuno-Histoquímica , Masculino , Camundongos , Microssomos/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/metabolismo , Piperidinas/metabolismo , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons , Quinazolinas/metabolismo , Quinazolinas/farmacocinética , Traçadores Radioativos , Radioquímica , Ratos , Distribuição Tecidual , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...