Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 281: 116669, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954908

RESUMO

In most of advanced oxidation processes (AOPs) used to destroy harmful organic chemicals in water/wastewater hydroxyl radical (•OH) reactions oxidize (increasing the oxygen/carbon ratio in the molecules) and mineralize (transforming them to inorganic molecules, H2O, CO2, etc.) these contaminants. In this paper, we used the radiolysis of water to produce •OH and characterised the rate of oxidation and mineralization by the dose dependences of the Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) content values. Analysis of the dose dependences for 34 harmful organic compounds showed large differences in the oxidation and mineralization rates and these parameters are characteristic to the given group of chemicals. E.g., the rate of oxidation is relatively low for fluoroquinolone antibiotics; it is high for ß-blocker medicines. Mineralization rates are low for both fluoroquinolones and ß-blockers. The one-electron-oxidant •OH in most cases induces two - four-electron-oxidations. Most of the degradation takes place gradually, through several stable molecule intermediates. However, based on the results it is likely, that some part of the oxidation and mineralization takes place parallel. The organic radicals formed in •OH reactions react with several O2 molecules and release several inorganic fragments during the radical life cycle.

2.
Molecules ; 29(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257318

RESUMO

The long time (2 h) required for measurement, expensive chemicals (Ag2SO4), and toxic reagents (K2Cr2O7, HgSO4) limit the application of the standard method for measuring the oxygen equivalent of organic content in wastewater (chemical oxygen demand, COD). In recent years, the COD has increasingly been replaced by the total organic carbon (TOC) parameter. Since the limit values of the pollution levels are usually given in terms of the COD, efforts are being made to find the correlation between these parameters. Several papers have published correlation analyses of COD and TOC for industrial and municipal wastewater, but the relationship has not been discussed for individual chemicals. Here, this relationship was investigated using 70 contaminants (laboratory chemicals, pharmaceuticals, and pesticides). The calculated COD values, in most cases, agreed, within ~10%, with the experimental ones; for tetracyclines and some chloroaromatic molecules, the measured values were 20-50% lower than the calculated values. The COD/TOC ratios were between 2 and 3: for macrolides, they were ~3; for fluoroquinolones and tetracyclines, they were ~2. The molecular structure dependence of the ratio necessitates the establishing of the correlation on an individual basis. In advanced oxidation processes (AOPs), the ratio changes during degradation, limiting the application of TOC instead of COD.

3.
Nanoscale ; 11(36): 17104-17110, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31508641

RESUMO

New semiconducting metastable cubic phases have been recently discovered in the tin monosulfide and monoselenide systems. Surface energy calculations and experimental studies indicate that this cubic π-phase is stabilized by specific ligand adsorption on the surface. In this work, it is shown experimentally that the synthesis carried out using mixtures of oleylamine and oleylammonium chloride (OACl) surfactants results in the cubic phase, transforming the growth from orthorhombic to cubic nanoparticles with increasing OACl concentration up to a limiting point. Complementary ab initio calculations find that adsorbed ligands lower the surface energies for both the cubic phase and the orthorhombic phase, relative to the pristine surfaces. The decrease in the surface energy increases with ligand coverage. Stronger binding energies to the cubic phase suggest a higher coverage, and therefore preferential stabilization of this phase. Upon further increasing the coverage, the surface energy becomes negative, effectively destabilizing the particles in agreement with experimental observations. Bonding analysis shows that Cl bonds to Sn and replaces missing Sn-S bonds at the surface of the cubic structure. In the competing orthorhombic layered phase, Cl also bonds to a Sn atom but at the expense of one of the Sn-S bonds of this Sn atom. This observation can explain the trends of the surface energies. This combined experimental and computational analysis sheds light on the stabilization processes of these nano-materials and indicates the path to improve synthetic routes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...