Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723175

RESUMO

Various subjective and objective methods have been proposed to identify which interictal epileptiform discharge (IED)-related EEG-fMRI results are more likely to delineate seizure generating tissue in patients with drug-resistant focal epilepsy for the purposes of surgical planning. In this intracranial EEG-fMRI study, we evaluated the utility of these methods to localize clinically relevant regions pre-operatively and compared the extent of resection of these areas to post-operative outcome. Seventy patients admitted for intracranial video-EEG monitoring were recruited for a simultaneous intracranial EEG-fMRI study. For all analyses of blood oxygen level-dependent responses associated with IEDs, an experienced epileptologist identified the most Clinically Relevant brain activation cluster using available clinical information. The Maximum cluster (the cluster with the highest z-score) was also identified for all analyses and assigned to one of three confidence levels (low, medium, or high) based on the difference of the peak z-scores between the Maximum and Second Maximum cluster (the cluster with the second highest peak z-value). The distance was measured and compared between the peak voxel of the aforementioned clusters and the electrode contacts where the interictal discharge and seizure onset were recorded. In patients who subsequently underwent epilepsy surgery, the spatial concordance between the aforementioned clusters and the area of resection was determined and compared to post-operative outcome. We evaluated 106 different IEDs in 70 patients. Both subjective (identification of the Clinically Relevant cluster) and objective (Maximum cluster much more significant than the second maximum cluster) methods of culling non-localizing EEG-fMRI activation maps increased the spatial concordance between these clusters and the corresponding IED or seizure onset zone contacts. However, only the objective methods of identifying medium and high confidence maps resulted in a significant association between resection of the peak voxel of the Maximum cluster and post-operative outcome. Resection of this area was associated with good post-operative outcomes but was not sufficient for seizure freedom. On the other hand, we found that failure to resect the medium and high confidence Maximum clusters was associated with a poor post-surgical outcome (negative predictive value = 1.0, sensitivity = 1.0). Objective methods to identify higher confidence EEG-fMRI results are needed to localize areas necessary for good post-operative outcomes. However, resection of the peak voxel within higher confidence Maximum clusters is not sufficient for good outcomes. Conversely, failure to resect the peak voxel in these clusters is associated with a poor post-surgical outcome.

3.
Epilepsia ; 62(5): 1105-1118, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33782964

RESUMO

OBJECTIVE: Scalp electroencephalographic (EEG)-functional magnetic resonance imaging (fMRI) studies suggest that the maximum blood oxygen level-dependent (BOLD) response to an interictal epileptiform discharge (IED) identifies the area of IED generation. However, the maximum BOLD response has also been reported in distant, seemingly irrelevant areas. Given the poor postoperative outcomes associated with extra-temporal lobe epilepsy, we hypothesized this finding is more common when analyzing extratemporal IEDs as compared to temporal IEDs. We further hypothesized that a subjective, holistic assessment of other significant BOLD clusters to identify the most clinically relevant cluster could be used to overcome this limitation and therefore better identify the likely origin of an IED. Specifically, we also considered the second maximum cluster and the cluster closest to the electrode contacts where the IED was observed. METHODS: Maps of significant IED-related BOLD activation were generated for 48 different IEDs recorded from 33 patients who underwent intracranial EEG-fMRI. The locations of the maximum, second maximum, and closest clusters were identified for each IED. An epileptologist, blinded to these cluster assignments, selected the most clinically relevant BOLD cluster, taking into account all available clinical information. The distances between these BOLD clusters and their corresponding IEDs were then measured. RESULTS: The most clinically relevant cluster was the maximum cluster for 56% (27/48) of IEDs, the second maximum cluster for 13% (6/48) of IEDs, and the closest cluster for 31% (15/48) of IEDs. The maximum clusters were closer to IED contacts for temporal than for extratemporal IEDs (p = .022), whereas the most clinically relevant clusters were not significantly different (p = .056). SIGNIFICANCE: The maximum BOLD response to IEDs may not always be the most indicative of IED origin. We propose that available clinical information should be used in conjunction with EEG-fMRI data to identify a BOLD cluster representative of the IED origin.


Assuntos
Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/métodos , Epilepsias Parciais/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...