Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(8): 082501, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25192091

RESUMO

Using the Penning trap mass spectrometer TITAN, we performed the first direct mass measurements of (20,21)Mg, isotopes that are the most proton-rich members of the A = 20 and A = 21 isospin multiplets. These measurements were possible through the use of a unique ion-guide laser ion source, a development that suppressed isobaric contamination by 6 orders of magnitude. Compared to the latest atomic mass evaluation, we find that the mass of (21)Mg is in good agreement but that the mass of (20)Mg deviates by 3 σ. These measurements reduce the uncertainties in the masses of (20,21)Mg by 15 and 22 times, respectively, resulting in a significant departure from the expected behavior of the isobaric multiplet mass equation in both the A = 20 and A = 21 multiplets. This presents a challenge to shell model calculations using either the isospin nonconserving universal sd USDA and USDB Hamiltonians or isospin nonconserving interactions based on chiral two- and three-nucleon forces.

2.
Rev Sci Instrum ; 85(2): 02B912, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593617

RESUMO

At the ISAC facility at TRIUMF radioactive ions are produced by bombarding solid targets with up to 100 µA of 500 MeV protons. The reaction products have to diffuse out of the hot target into an ion source. Normally, singly charged ions are extracted. They can be transported either directly to experiments or via an ECR charge state breeder to a post accelerator. Several different types of ion sources have to be used in order to deliver a large variety of rare isotope beams. At ISAC those are surface ion sources, forced electron beam arc discharge (FEBIAD) ion sources and resonant laser ionization sources. Recent development activities concentrated on increasing the selectivity for the ionization to suppress isobaric contamination in the beam. Therefore, a surface ion rejecting resonant laser ionization source (SIRLIS) has been developed to suppress ions from surface ionization. For the FEBIAD ion source a cold transfer line has been introduced to prevent less volatile components from reaching the ion source.

3.
Rev Sci Instrum ; 84(1): 013306, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23387641

RESUMO

A test stand for ion source development and laser resonance ionization spectroscopy was built and commissioned at TRIUMF. The test stand is needed to develop efficient ion sources that can function reliably in the hostile, high temperature, high radiation environment of TRIUMF's isotope separator on-line (ISOL) production target ion source. In addition, it enables laser resonance ionization spectroscopy to develop laser excitation schemes suitable for the solid-state laser systems used with TRIUMF's resonant ionization laser ion source . Also, it allows for possible improvement of current ion sources and validation of new designs. The test stand employs a copy of the ion optics used on-line, so that results can be transferred directly to radioactive ion beam production. Due to space restrictions and the need for rapid mass scans, a quadrupole mass spectrometer is used as a mass separator. One of the first experiments conducted on the laser ion source test stand (LIS STAND) was resonant ionization spectroscopy of gallium to improve on the ionization scheme previously used on-line, so that low yield isotopes (e.g., (62)Ga) become available for experiments. Different Rydberg series in gallium were observed and autoionizing states were searched for. The overall LIS STAND system performance, characteristics, and the first resonant ionization spectroscopy are described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...