Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biomicrofluidics ; 16(4): 044111, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35992636

RESUMO

Speeding up and enhancing the performances of nucleic acid biosensing technologies have remained drivers for innovation. Here, we optimize a fluorimetry-based technology for DNA detection based on the concentration of linear targets paired with probes. The concentration module consists of a microfluidic channel with the shape of a funnel in which we monitor a viscoelastic flow and a counter-electrophoretic force. We report that the technology performs better with a target longer than 100 nucleotides (nt) and a probe shorter than 30 nt. We also prove that the control of the funnel geometry in 2.5D using grayscale lithography enhances sensitivity by 100-fold in comparison to chips obtained by conventional photolithography. With these optimized settings, we demonstrate a limit of detection of 4 fM in 30 s and a detection range of more than five decades. This technology hence provides an excellent balance between sensitivity and time to result.

2.
Soft Matter ; 16(24): 5640-5649, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32510064

RESUMO

The combination of hydrodynamic actuation with an opposing electrophoretic force in viscoelastic liquids enables the separation, concentration, and purification of DNA. Obtaining good analytical performances despite the use of hydrodynamic flow fields, which dramatically enhance band broadening due to Taylor dispersion, constitutes a paradox that remains to be clarified. Here, we study the mechanism of band broadening in electrohydrodynamic migration with an automated microfluidic platform that allows us to track the migration of a 600 bp band in the pressure-electric field parameter space. We demonstrate that diffusion in the electrohydrodynamic regime is controlled predominantly by the electric field and marginally by the hydrodynamic flow velocity. We explain this response with an analytical model of diffusion based on Taylor dispersion arguments. Furthermore, we demonstrate that the electric field can be modulated over time to monitor and minimize the breadth of a DNA band, and suggest guidelines to enhance the resolution of DNA separation experiments. Altogether, our report is a leap towards to the development of high-performance analytical technologies based on electrohydrodynamic actuation.


Assuntos
DNA/isolamento & purificação , Difusão , Elasticidade , Eletroforese , Hidrodinâmica , Microfluídica , Modelos Teóricos , Povidona , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...