Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(10): 158776, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32738301

RESUMO

Palmitoleic acid (POA, 16:1n-7) is a lipokine that has potential nutraceutical use to treat non-alcoholic fatty liver disease. We tested the effects of POA supplementation (daily oral gavage, 300 mg/Kg, 15 days) on murine liver inflammation induced by a high fat diet (HFD, 59% fat, 12 weeks). In HFD-fed mice, POA supplementation reduced serum insulin and improved insulin tolerance compared with oleic acid (OA, 300 mg/Kg). The livers of POA-treated mice exhibited less steatosis and inflammation than those of OA-treated mice with lower inflammatory cytokine levels and reduced toll-like receptor 4 protein content. The anti-inflammatory effects of POA in the liver were accompanied by a reduction in liver macrophages (LM, CD11c+; F4/80+; CD86+), an effect that could be triggered by peroxisome proliferator activated receptor (PPAR)-γ, a lipogenic transcription factor upregulated in livers of POA-treated mice. We also used HFD-fed mice with selective deletion of PPAR-γ in myeloid cells (PPAR-γ KOLyzCre+) to test whether the beneficial anti-inflammatory effects of POA are dependent on macrophages PPAR-γ. POA-mediated improvement of insulin tolerance was tightly dependent on myeloid PPAR-γ, while POA anti-inflammatory actions including the reduction in liver inflammatory cytokines were preserved in mice bearing myeloid cells deficient in PPAR-γ. This overlapped with increased CD206+ (M2a) cells and downregulation of CD86+ and CD11c+ liver macrophages. Moreover, POA supplementation increased hepatic AMPK activity and decreased expression of the fatty acid binding scavenger receptor, CD36. We conclude that POA controls liver inflammation triggered by fat accumulation through induction of M2a macrophages independently of myeloid cell PPAR-γ.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Inflamação/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR gama/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Antígeno B7-2/genética , Antígeno CD11c/genética , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Lectinas Tipo C/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Receptor de Manose , Lectinas de Ligação a Manose/genética , Camundongos , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Proteínas Quinases/genética , Receptores de Superfície Celular/genética
2.
Biomolecules ; 10(2)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079362

RESUMO

Thimet oligopeptidase (EC 3.4.24.15; EP24.15; THOP1) is a potential therapeutic target, as it plays key biological functions in processing biologically functional peptides. The structural conformation of THOP1 provides a unique restriction regarding substrate size, in that it only hydrolyzes peptides (optimally, those ranging from eight to 12 amino acids) and not proteins. The proteasome activity of hydrolyzing proteins releases a large number of intracellular peptides, providing THOP1 substrates within cells. The present study aimed to investigate the possible function of THOP1 in the development of diet-induced obesity (DIO) and insulin resistance by utilizing a murine model of hyperlipidic DIO with both C57BL6 wild-type (WT) and THOP1 null (THOP1-/-) mice. After 24 weeks of being fed a hyperlipidic diet (HD), THOP1-/- and WT mice ingested similar chow and calories; however, the THOP1-/- mice gained 75% less body weight and showed neither insulin resistance nor non-alcoholic fatty liver steatosis when compared to WT mice. THOP1-/- mice had increased adrenergic-stimulated adipose tissue lipolysis as well as a balanced level of expression of genes and microRNAs associated with energy metabolism, adipogenesis, or inflammation. Altogether, these differences converge to a healthy phenotype of THOP1-/- fed a HD. The molecular mechanism that links THOP1 to energy metabolism is suggested herein to involve intracellular peptides, of which the relative levels were identified to change in the adipose tissue of WT and THOP1-/- mice. Intracellular peptides were observed by molecular modeling to interact with both pre-miR-143 and pre-miR-222, suggesting a possible novel regulatory mechanism for gene expression. Therefore, we successfully demonstrated the previously unanticipated relevance of THOP1 in energy metabolism regulation. It was suggested that intracellular peptides were responsible for mediating the phenotypic differences that are described herein by a yet unknown mechanism of action.


Assuntos
Metabolismo Energético , Metaloendopeptidases/metabolismo , Obesidade/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Deleção de Genes , Resistência à Insulina , Lipólise , Masculino , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética
3.
Curr Pharm Des ; 26(9): 932-945, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31969093

RESUMO

BACKGROUND: Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore, these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts through the AMPK pathway. OBJECTIVE: The aim of this study was to review TZD and metformin as pharmacological treatments for insulin resistance associated with obesity and cancer. CONCLUSION: Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side effects caused by chemotherapy.


Assuntos
Resistência à Insulina , Metformina/uso terapêutico , Neoplasias/tratamento farmacológico , Obesidade/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Humanos , Hiperglicemia , Hipoglicemiantes/farmacologia , Insulina
4.
Front Pharmacol ; 9: 452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867463

RESUMO

Doxorubicin (DX) is a chemotherapeutic drug that is used in clinical practice that promotes deleterious side effects in non-tumor tissues such as adipose tissue. We showed that DX leads to extensive damage in adipose tissue via a disruption in 5'-adenosine monophosphate-activated protein kinase (AMPK) and PPAR-gamma signaling. Thus, we investigated whether co-treatment with the biguanide drug metformin (MET) could prevent the side effects of DX through the activation of AMPK in adipose tissue. The goal of the present study was to verify the effects of DX and adjuvant MET treatment in subcutaneous adipose tissue (SAT) and to determine whether MET could protect against chemotherapy-induced side effects. C57/BL6 mice received DX hydrochloride (2.5 mg/kg) intraperitoneally 2 times per week for 2 weeks (DX), concomitantly or not, with MET administration (300 mg/kg oral daily) (DX + MET). The control group (CTRL) was pair-fed according to the food consumption of the DX group. After euthanasia, adipose tissue fat pads were collected, and SAT was extracted so that adipocytes could be isolated. Glucose uptake was then measured, and histological, gene, and protein analyses were performed. One-way analysis of variance was also performed, and significance was set to 5%. DX reduced retroperitoneal fat mass and epididymal pads and decreased glycemia. In cultured primary subcutaneous adipocytes, mice in the DX group had lower glucose uptake when stimulated with insulin compared with mice in the CTRL group. Adipocytes in the DX group exhibited a reduced area, perimeter, and diameter; decreased adiponectin secretion; and decreased fatty acid synthase gene expression. SAT from MET-treated mice also showed a reduction in collagen deposition. Treatment with MET prevented fibrosis and restored glucose uptake in SAT after insulin stimulation, yet the drug was unable to prevent other side effects of DX such as tissue loss and inflammatory response.

5.
J Cell Physiol ; 232(8): 2168-2177, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27925195

RESUMO

BACKGROUND: Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5'AMP-activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator-activated receptor-α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. OBJECTIVE: To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. METHODS: C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high-fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. RESULTS: Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP-1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF-21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF-21 in liver of PPARα KO mice. CONCLUSIONS: In mice fed with a high-fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF-21, dependent on PPARα. J. Cell. Physiol. 232: 2168-2177, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Fígado Gorduroso/tratamento farmacológico , Fígado/efeitos dos fármacos , PPAR alfa/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Fígado Gorduroso/enzimologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/metabolismo , Predisposição Genética para Doença , Glucoquinase/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , Fenótipo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo
6.
J Cell Physiol ; 232(5): 1008-1019, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27216550

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the main liver diseases today, and may progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Some studies have shown the beneficial effects of aerobic exercise on reversing NAFLD. To verify whether chronic aerobic exercise improves the insulin resistance, liver inflammation, and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR-α knockout (KO) mice were fed with a standard diet (SD) or HF during 12 weeks; the HF mice were trained on a treadmill during the last 8 weeks. Serum glucose and insulin tolerances, serum levels of aspartate aminotransferase, hepatic content of triacylglycerol, cytokines, gene expression, and protein expression were evaluated in all animals. Chronic exposure to HF diet increased triacylglycerol accumulation in the liver, leading to NAFLD, increased aminotransferase in the serum, increased peripheral insulin resistance, and higher adiposity index. Exercise reduced all these parameters in both animal genotypes. The liver lipid accumulation was not associated with inflammation; trained KO mice, however, presented a huge inflammatory response that was probably caused by a decrease in PPAR-γ expression. We conclude that exercise improved the damage caused by a HF independently of PPARα, apparently by a peripheral fatty acid oxidation in the skeletal muscle. We also found that the absence of PPARα together with exercise leads to a decrease in PPAR-γ and a huge inflammatory response. J. Cell. Physiol. 232: 1008-1019, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Progressão da Doença , Inflamação/tratamento farmacológico , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/deficiência , Condicionamento Físico Animal , Tiazolidinedionas/uso terapêutico , Animais , Peso Corporal , Jejum/sangue , Inflamação/sangue , Inflamação/complicações , Inflamação/genética , Lipídeos/sangue , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Tamanho do Órgão , PPAR alfa/metabolismo , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona
7.
Mediators Inflamm ; 2014: 582197, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147439

RESUMO

Palmitoleic acid (PMA) has anti-inflammatory and antidiabetic activities. Here we tested whether these effects of PMA on glucose homeostasis and liver inflammation, in mice fed with high-fat diet (HFD), are PPAR-α dependent. C57BL6 wild-type (WT) and PPAR-α-knockout (KO) mice fed with a standard diet (SD) or HFD for 12 weeks were treated after the 10th week with oleic acid (OLA, 300 mg/kg of b.w.) or PMA 300 mg/kg of b.w. Steatosis induced by HFD was associated with liver inflammation only in the KO mice, as shown by the increased hepatic levels of IL1-beta, IL-12, and TNF-α; however, the HFD increased the expression of TLR4 and decreased the expression of IL1-Ra in both genotypes. Treatment with palmitoleate markedly attenuated the insulin resistance induced by the HFD, increased glucose uptake and incorporation into muscle in vitro, reduced the serum levels of AST in WT mice, decreased the hepatic levels of IL1-beta and IL-12 in KO mice, reduced the expression of TLR-4 and increased the expression of IL-1Ra in WT mice, and reduced the phosphorylation of NF ����B (p65) in the livers of KO mice. We conclude that palmitoleate attenuates diet-induced insulin resistance, liver inflammation, and damage through mechanisms that do not depend on PPAR-α.


Assuntos
Ácidos Graxos Monoinsaturados/uso terapêutico , PPAR alfa/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Resistência à Insulina , Interleucina-12 , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Oleico/metabolismo , Ácido Oleico/uso terapêutico , PPAR alfa/deficiência , PPAR alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...