Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Drug Deliv ; 14(4): 566-574, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27605018

RESUMO

BACKGROUND: The aim of this study was to develop, characterize and assess the cytotoxic activity of pHsensitive (pHL-Gd), stealth pH-sensitive (SpHL-Gd), and conventional (convL-Gd) liposomes containing gadodiamide (Gd-DTPA-BMA). METHODS: Formulations were prepared by reverse-phase evaporation method and their physicochemical properties were evaluated by means of particle size, zeta potential, and Gd-DTPA-BMA entrapment. SpHL-Gd was considered being the most promising liposome, since it combines stealth and fusogenic characteristics that might contribute to achieve higher therapeutic efficiency. Their drug encapsulation percentages have been optimized satisfactorily. The addition of Gd-DTPA-BMA at 125 µmol/mL in the SpHL-Gd preparation allowed obtaining liposomes with appropriate encapsulation percentage (20.3 ± 0.1%) and entrapment (25.4 ± 0.1 µmol/mL). RESULTS: The cytotoxic studies on the 4T1 breast cancer cell line demonstrated that liposomes-loaded with Gd-DTPA-BMA inhibited cancer cell. pHL-Gd and SpHL-Gd liposomes showed higher activity than convL-Gd and free Gd-DTPA-BMA, indicating that the pH-sensitive characteristic was important to improve intracellular delivery. CONCLUSION: The presence of polyethylene glycol (PEG) in the SpHL-Gd formulation did not affect the pH-sensitivity and internalization. Therefore, the results of this study suggest the feasibility of liposomes containing Gd-DTPA-BMA as a new promising controlled delivery system.


Assuntos
Sistemas de Liberação de Medicamentos , Gadolínio DTPA/química , Lipossomos , Linhagem Celular Tumoral , Humanos , Tamanho da Partícula , Polietilenoglicóis
2.
Int J Nanomedicine ; 11: 3737-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27563241

RESUMO

BACKGROUND: Despite recent advances in cancer therapy, the treatment of bone tumors remains a major challenge. A possible underlying hypothesis, limitation, and unmet need may be the inability of therapeutics to penetrate into dense bone mineral, which can lead to poor efficacy and high toxicity, due to drug uptake in healthy organs. The development of nanostructured formulations with high affinity for bone could be an interesting approach to overcome these challenges. PURPOSE: To develop a liposomal formulation with high affinity for hydroxyapatite and the ability to release doxorubicin (DOX) in an acidic environment for future application as a tool for treatment of bone metastases. MATERIALS AND METHODS: Liposomes were prepared by thin-film lipid hydration, followed by extrusion and the sulfate gradient-encapsulation method. Liposomes were characterized by average diameter, ζ-potential, encapsulation percentage, X-ray diffraction, and differential scanning calorimetry. Release studies in buffer (pH 7.4 or 5), plasma, and serum, as well as hydroxyapatite-affinity in vitro analysis were performed. Cytotoxicity was evaluated by MTT assay against the MDA-MB-231 cell line, and biodistribution was assessed in bone metastasis-bearing animals. RESULTS: Liposomes presented suitable diameter (~170 nm), DOX encapsulation (~2 mg/mL), controlled release, and good plasma and serum stability. The existence of interactions between DOX and the lipid bilayer was proved through differential scanning calorimetry and small-angle X-ray scattering. DOX release was faster when the pH was in the range of a tumor than at physiological pH. The bone-targeted formulation showed a strong affinity for hydroxyapatite. The encapsulation of DOX did not interfere in its intrinsic cytotoxicity against the MDA-MB-231 cell line. Biodistribution studies demonstrated high affinity of this formulation for tumors and reduction of uptake in the heart. CONCLUSION: These results suggest that bone-targeted pH-sensitive liposomes containing DOX can be an interesting strategy for selectively delivering this drug into bone-tumor sites, increasing its activity, and reducing DOX-related toxicity.


Assuntos
Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Osso e Ossos/efeitos dos fármacos , Fenômenos Químicos , Doxorrubicina/análogos & derivados , Animais , Antibióticos Antineoplásicos/química , Soluções Tampão , Varredura Diferencial de Calorimetria , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Química Farmacêutica , Modelos Animais de Doenças , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Durapatita/química , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Espalhamento a Baixo Ângulo , Soro , Distribuição Tecidual/efeitos dos fármacos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...