Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PLoS Negl Trop Dis ; 17(9): e0011646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729272

RESUMO

Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice.


Assuntos
Doença de Chagas , Leishmania major , Trypanosoma cruzi , Camundongos , Animais , Leishmania major/genética , Diferenciação Celular , Inositol/metabolismo , Inositol/farmacologia , Mamíferos
2.
J Clin Virol Plus ; 2(3): 100101, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35959109

RESUMO

There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.

3.
J Clin Virol Plus ; : 100103, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35993012

RESUMO

There is a massive demand to identify alternative methods to detect new cases of COVID-19 as well as to investigate the epidemiology of the disease. In many countries, importation of commercial kits poses a significant impact on their testing capacity and increases the costs for the public health system. We have developed an ELISA to detect IgG antibodies against SARS-CoV-2 using a recombinant viral nucleocapsid (rN) protein expressed in E. coli. Using a total of 894 clinical samples we showed that the rN-ELISA was able to detect IgG antibodies against SARS-CoV-2 with high sensitivity (97.5%) and specificity (96.3%) when compared to a commercial antibody test. After three external validation studies, we showed that the test accuracy was higher than 90%. The rN-ELISA IgG kit constitutes a convenient and specific method for the large-scale determination of SARS-CoV-2 antibodies in human sera with high reliability.

4.
Virus Evol ; 8(2): veac064, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35996592

RESUMO

The emergence and global dissemination of Severe Acute Respiratory Syndrome virus 2 (SARS-CoV-2) variants of concern (VOCs) have been described as the main factor driving the Coronavirus Disease 2019 pandemic. In Brazil, the Gamma variant dominated the epidemiological scenario during the first period of 2021. Many Brazilian regions detected the Delta variant after its first description and documented its spread. To monitor the introduction and spread of VOC Delta, we performed Polymerase Chain Reaction (PCR) genotyping and genome sequencing in ten regional sentinel units from June to October 2021 in the State of Minas Gerais (MG). We documented the introduction and spread of Delta, comprising 70 per cent of the cases 8 weeks later. Comparing the viral loads of the Gamma and Delta dominance periods, we provide additional evidence that the latter is more transmissible. The spread and dominance of Delta did not culminate in the increase in cases and deaths, suggesting that the vaccination may have restrained the epidemic growth. Analysis of 224 novel Delta genomes revealed that Rio de Janeiro state was the primary source for disseminating this variant in the state of MG. We present the establishment of Delta, providing evidence of its enhanced transmissibility and showing that this variant shift did not aggravate the epidemiological scenario in a high immunity setting.

5.
Viruses ; 14(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35336917

RESUMO

Previous studies have indicated that antibody responses can be robustly induced after the vaccination in individuals previously infected by SARS-CoV-2. To evaluate anti-SARS-CoV-2 humoral responses in vaccinated individuals with or without a previous history of COVID-19, we compared levels of anti-SARS-CoV-2 antibodies in the sera from 21 vaccinees, including COVID-19-recovered or -naïve individuals in different times, before and after immunization with an inactivated COVID-19 vaccine. Anti-SARS-CoV-2-specific antibodies elicited after COVID-19 and/or immunization with an inactivated vaccine were measured by ELISA and Plaque Reduction Neutralizing assays. Antibody kinetics were consistently different between the two vaccine doses for naïve individuals, contrasting with the SARS-CoV-2-recovered subjects in which we observed no additional increase in antibody levels following the second dose. Sera from SARS-CoV2-naïve individuals had no detectable neutralizing activity against lineage B.1 SARS-CoV-2 or Gamma variant five months after the second vaccine dose. Contrarily, SARS-CoV-2-recovered subjects retained considerable neutralizing activity against both viruses. We conclude that a single inactivated SARS-CoV-2 vaccine dose may be sufficient to induce protective antibody responses in individuals with previous history of SARS-CoV-2 infection.


Assuntos
COVID-19 , Vacinas Virais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Viral , SARS-CoV-2
6.
mBio ; 13(1): e0347821, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073735

RESUMO

Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Animais , Camundongos , Trypanosoma cruzi/genética , Parasitos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Glicoproteínas/metabolismo , Doença de Chagas/parasitologia , Neuraminidase , Mucinas/metabolismo , Fatores de Virulência , Mamíferos/metabolismo
7.
Front Microbiol ; 12: 713713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867841

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic unfolded due to the widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission reinforced the urgent need for affordable molecular diagnostic alternative methods for massive testing screening. We present the clinical validation of a pH-dependent colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) for SARS-CoV-2 detection. The method revealed a limit of detection of 19.3 ± 2.7 viral genomic copies/µL when using RNA extracted samples obtained from nasopharyngeal swabs collected in guanidine-containing viral transport medium. Typical RT-LAMP reactions were performed at 65°C for 30 min. When compared to reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), up to cycle-threshold (Ct) value 32, RT-LAMP presented 98% [95% confidence interval (CI) = 95.3-99.5%] sensitivity and 100% (95% CI = 94.5-100%) specificity for SARS-CoV-2 RNA detection targeting E and N genes. No cross-reactivity was detected when testing other non-SARS-CoV virus, confirming high specificity. The test is compatible with primary RNA extraction-free samples. We also demonstrated that colorimetric RT-LAMP can detect SARS-CoV-2 variants of concern and variants of interest, such as variants occurring in Brazil named gamma (P.1), zeta (P.2), delta (B.1.617.2), B.1.1.374, and B.1.1.371. The method meets point-of-care requirements and can be deployed in the field for high-throughput COVID-19 testing campaigns, especially in countries where COVID-19 testing efforts are far from ideal to tackle the pandemics. Although RT-qPCR is considered the gold standard for SARS-CoV-2 RNA detection, it requires expensive equipment, infrastructure, and highly trained personnel. In contrast, RT-LAMP emerges as an affordable, inexpensive, and simple alternative for SARS-CoV-2 molecular detection that can be applied to massive COVID-19 testing campaigns and save lives.

8.
J Immunol Res ; 2021: 5568077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34007852

RESUMO

METHODS: A total of 1028 sera samples were used for the development and validation of ELISA (321 samples from L. infantum-infected patients, 62 samples from VL/AIDS coinfected patients, 236 samples from patients infected with other diseases, and 409 samples from healthy donors). A total of 520 sera samples were used to develop and validate ICT (249 samples from L. infantum-infected patients, 46 samples from VL/AIDS coinfected patients, 40 samples from patients infected with other diseases, and 185 samples from healthy donors). Findings. Using the validation sera panels, DTL-4-based ELISA displayed an overall sensitivity of 94.61% (95% CI: 89.94-97.28), a specificity of 99.41% (95% CI: 96.39-99.99), and an accuracy of 97.02% (95% CI: 94.61-98.38), while for ICT, sensitivity, specificity, and accuracy values corresponded to 91.98% (95% CI: 86.65-95.39), 100.00% (95% CI: 96.30-100.00), and 95.14% (95% CI: 91.62-97.15), respectively. When testing sera samples from VL/AIDS coinfected patients, DTL-4-ELISA displayed a sensitivity of 77.42% (95% CI: 65.48-86.16), a specificity of 99.41% (95% CI: 96.39-99.99), and an accuracy of 93.51% (95% CI: 89.49%-96.10%), while for DTL-4-ICT, sensitivity was 73.91% (95% CI: 59.74-84.40), specificity was 90.63% (95% CI: 81.02-95.63), and accuracy was 82.00% (95% CI: 73.63-90.91). CONCLUSION: DTL-4 is a promising candidate antigen for serodiagnosis of VL patients, including those with VL/AIDS coinfection, when incorporated into ELISA or ICT test formats.


Assuntos
Anticorpos Antiprotozoários/sangue , Leishmaniose Visceral/diagnóstico , Proteínas de Protozoários/imunologia , Proteínas Recombinantes de Fusão/imunologia , Testes Sorológicos/métodos , Adulto , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Cromatografia de Afinidade/métodos , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Leishmania infantum/imunologia , Leishmaniose Visceral/sangue , Leishmaniose Visceral/imunologia , Leishmaniose Visceral/parasitologia , Masculino , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Sensibilidade e Especificidade
9.
Viruses ; 13(4)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810324

RESUMO

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) to detect SARS-CoV-2 RNA is an essential test to monitor the occurrence of COVID-19. A methodology is proposed for the determination of maximum pool size and adjustments of cut-off values of cycle threshold (Ct in RT-qPCR pool testing, to compensate for the dilution caused by pooling. The trade-off between pool size and test sensitivity is stated explicitly. The procedure was designed to ensure that samples that would be detectable in individual testing remain detectable in pool testing. The proposed relaxation in cut-off is dependent on the pool size, allowing a relatively tight correction to avoid loss of detection of positive samples. The methodology was evaluated in a study of pool testing of adults attending a public emergency care unit, reference for COVID-19 in Belo Horizonte, Brazil, and presenting flu-like symptoms. Even samples on the edge of detectability in individual testing were detected correctly. The proposed procedure enhances the consistency of RT-qPCR pool testing by enforcing that the scales of detectability in pool processing and in individual sample processing are compatible. This may enhance the contribution of pool testing to large-scale testing for COVID-19.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/normas , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Adulto Jovem
10.
Braz J Microbiol ; 52(2): 531-539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33788178

RESUMO

Accurate testing to detect SARS-CoV-2 RNA is key to counteract the virus spread. Nonetheless, the number of diagnostic laboratories able to perform qPCR tests is limited, particularly in developing countries. We describe the use of a virus-inactivating, denaturing solution (DS) to decrease virus infectivity in clinical specimens without affecting RNA integrity. Swab samples were collected from infected patients and from laboratory personnel using a commercially available viral transport solution and the in-house DS. Samples were tested by RT-qPCR, and exposure to infective viruses was also accessed by ELISA. The DS used did not interfere with viral genome detection and was able to maintain RNA integrity for up to 16 days at room temperature. Furthermore, virus loaded onto DS were inactivated, as attested by attempts to grow SARS-CoV-2 in cell monolayers after DS desalt filtration to remove toxic residues. The DS described here provides a strategy to maintain diagnostic accuracy and protects diagnostic laboratory personnel from accidental infection, as it has helped to protect our lab crew.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Estabilidade de RNA/efeitos dos fármacos , RNA Viral/análise , SARS-CoV-2/genética , Manejo de Espécimes/métodos , Testes Diagnósticos de Rotina , Genoma Viral/genética , Humanos , Desnaturação Proteica/efeitos dos fármacos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/efeitos dos fármacos
11.
Parasitology ; 148(10): 1171-1185, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33190649

RESUMO

Trypanosoma cruzi has three biochemically and morphologically distinct developmental stages that are programmed to rapidly respond to environmental changes the parasite faces during its life cycle. Unlike other eukaryotes, Trypanosomatid genomes contain protein coding genes that are transcribed into polycistronic pre-mRNAs and have their expression controlled by post-transcriptional mechanisms. Transcriptome analyses comparing three stages of the T. cruzi life cycle revealed changes in gene expression that reflect the parasite adaptation to distinct environments. Several genes encoding RNA binding proteins (RBPs), known to act as key post-transcriptional regulatory factors, were also differentially expressed. We characterized one T. cruzi RBP, named TcZH3H12, which contains a zinc finger domain and is up-regulated in epimastigotes compared to trypomastigotes and amastigotes. TcZC3H12 knockout (KO) epimastigotes showed decreased growth rates and increased capacity to differentiate into metacyclic trypomastigotes. Transcriptome analyses comparing wild type and TcZC3H12 KOs revealed a TcZC3H12-dependent expression of epimastigote-specific genes such as genes encoding amino acid transporters and proteins associated with differentiation (PADs). RNA immunoprecipitation assays showed that transcripts from the PAD family interact with TcZC3H12. Taken together, these findings suggest that TcZC3H12 positively regulates the expression of genes involved in epimastigote proliferation and also acts as a negative regulator of metacyclogenesis.


Assuntos
Expressão Gênica , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Dedos de Zinco/genética , Sequência de Aminoácidos , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência , Trypanosoma cruzi/metabolismo
12.
PLoS Pathog ; 16(8): e1008781, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810179

RESUMO

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays.


Assuntos
Doença de Chagas/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Ativação de Neutrófilo , Neutrófilos , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/patologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Fibroblastos/patologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-32373549

RESUMO

MSH2, associated with MSH3 or MSH6, is a central component of the eukaryotic DNA Mismatch Repair (MMR) pathway responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. Previous studies have shown that MSH2 plays an additional DNA repair role in response to oxidative damage in Trypanosoma cruzi and Trypanosoma brucei. By performing co-immunoprecipitation followed by mass spectrometry with parasites expressing tagged proteins, we confirmed that the parasites' MSH2 forms complexes with MSH3 and MSH6. To investigate the involvement of these two other MMR components in the oxidative stress response, we generated knockout mutants of MSH6 and MSH3 in T. brucei bloodstream forms and MSH6 mutants in T. cruzi epimastigotes. Differently from the phenotype observed with T. cruzi MSH2 knockout epimastigotes, loss of one or two alleles of T. cruzi msh6 resulted in increased susceptibility to H2O2 exposure, besides impaired MMR. In contrast, T. brucei msh6 or msh3 null mutants displayed increased tolerance to MNNG treatment, indicating that MMR is affected, but no difference in the response to H2O2 treatment when compared to wild type cells. Taken together, our results suggest that, while T. cruzi MSH6 and MSH2 are involved with the oxidative stress response in addition to their role as components of the MMR, the DNA repair pathway that deals with oxidative stress damage operates differently in T. brucei.


Assuntos
Trypanosoma brucei brucei , Trypanosoma cruzi , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Peróxido de Hidrogênio/toxicidade , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Estresse Oxidativo , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
14.
Genomics ; 112(1): 990-997, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31229555

RESUMO

Trypanosoma cruzi is the etiologic agent of Chagas disease, a life-threatening disease that affects different tissues. Within its mammalian host, T. cruzi develops molecular strategies for successful invasion of different cell types and adaptation to the intracellular environment. Conversely, the host cell responds to the infection by activating intracellular pathways to control parasite replication. Here, we reviewed genome-wide expression studies based on microarray and RNA-seq data from both parasite and host genes generated from animal models of infection as well as from Chagas disease patients. As expected, analyses of T. cruzi genes highlighted changes related to parasite energy metabolism and cell surface molecules, whereas host cell transcriptome emphasized the role of immune response genes. Besides allowing a better understanding of mechanisms behind the pathogenesis of Chagas disease, these studies provide essential information for the development of new therapies as well as biomarkers for diagnosis and assessment of disease progression.


Assuntos
Doença de Chagas/genética , Transcriptoma , Trypanosoma cruzi/genética , Animais , Cardiomiopatia Chagásica/genética , Doença de Chagas/parasitologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Humanos , Estágios do Ciclo de Vida , Camundongos , RNA não Traduzido/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
15.
Front Immunol ; 9: 671, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706955

RESUMO

Few studies investigate the major protein antigens targeted by the antibody diversity of infected mice with Trypanosoma cruzi. To detect global IgG antibody specificities, sera from infected mice were immunoblotted against whole T. cruzi extracts. By proteomic analysis, we were able to identify the most immunogenic T. cruzi proteins. We identified three major antigens as pyruvate phosphate dikinase, Hsp-85, and ß-tubulin. The major protein band recognized by host IgG was T. cruzi ß-tubulin. The T. cruzi ß-tubulin gene was cloned, expressed in E. coli, and recombinant T. cruzi ß-tubulin was obtained. Infection increased IgG reactivity against recombinant T. cruzi ß-tubulin. A single immunization of mice with recombinant T. cruzi ß-tubulin increased specific IgG reactivity and induced protection against T. cruzi infection. These results indicate that repertoire analysis is a valid approach to identify antigens for vaccines against Chagas disease.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Doença de Chagas/imunologia , Imunoglobulina G/imunologia , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/imunologia , Tubulina (Proteína)/imunologia , Animais , Modelos Animais de Doenças , Imunização , Masculino , Camundongos Endogâmicos BALB C , Camundongos Mutantes
16.
Int J Parasitol ; 48(8): 591-596, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29577891

RESUMO

CRISPR/Cas9 technology has been used to edit genomes in a variety of organisms. Using the GP72 gene as a target sequence, we tested two distinct approaches to generate Trypanosoma cruzi knockout mutants using the Cas9 nuclease and in vitro transcribed single guide RNA. Highly efficient rates of disruption of GP72 were achieved either by transfecting parasites stably expressing Streptococcus pyogenes Cas9 with single guide RNA or by transfecting wild type parasites with recombinant Staphylococcus aureus Cas9 previously associated with single guide RNA. In both protocols, we used single-stranded oligonucleotides as a repair template for homologous recombination and insertion of stop codons in the target gene.


Assuntos
Sistemas CRISPR-Cas , DNA de Protozoário/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Trypanosoma cruzi/genética , Sequência de Bases , Mutação
17.
Front Microbiol ; 8: 2188, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176965

RESUMO

Several antigens from Trypanosoma cruzi, the causative agent of Chagas disease (CD), contain amino acid repeats identified as targets of the host immune response. Ribosomal proteins containing an Ala, Lys, Pro-rich repeat domain are among the T. cruzi antigens that are strongly recognized by antibodies from CD patients. Here we investigated the role of amino acid repeats present in the T. cruzi ribosomal protein L7a, by immunizing mice with recombinant versions of the full-length protein (TcRpL7a), as well as with truncated versions containing only the repetitive (TcRpL7aRep) or the non-repetitive domains (TcRpL7aΔRep). Mice immunized with full-length TcRpL7a produced high levels of IgG antibodies against the complete protein as well as against the repeat domain, whereas mice immunized with TcRpL7aΔRep or TcRpL7aRep produced very low levels or did not produce IgG antibodies against this antigen. Also in contrast to mice immunized with the full-length TcRpL7a, which produced high levels of IFN-γ, only low levels of IFN-γ or no IFN-γ were detected in cultures of splenocytes derived from mice immunized with truncated versions of the protein. After challenging with trypomastigotes, mice immunized with the TcRpL7a were partially protected against the infection whereas immunization with TcRpL7aΔRep did not alter parasitemia levels compared to controls. Strikingly, mice immunized with TcRpL7aRep displayed an exacerbated parasitemia compared to the other groups and 100% mortality after infection. Analyses of antibody production in mice that were immunized with TcRpL7aRep prior to infection showed a reduced humoral response to parasite antigens as well as against an heterologous antigen. In vitro proliferation assays with mice splenocytes incubated with different mitogens in the presence of TcRpL7aRep resulted in a drastic inhibition of B-cell proliferation and antibody production. Taken together, these results indicate that the repeat domain of TcRpL7a acts as an immunosuppressive factor that down regulates the host B-cell response against parasite antigens favoring parasite multiplication in the mammalian host.

18.
PLoS Pathog ; 11(12): e1005296, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641088

RESUMO

Leishmaniasis, a human parasitic disease with manifestations ranging from cutaneous ulcerations to fatal visceral infection, is caused by several Leishmania species. These protozoan parasites replicate as extracellular, flagellated promastigotes in the gut of a sandfly vector and as amastigotes inside the parasitophorous vacuole of vertebrate host macrophages. Amastins are surface glycoproteins encoded by large gene families present in the genomes of several trypanosomatids and highly expressed in the intracellular amastigote stages of Trypanosoma cruzi and Leishmania spp. Here, we showed that the genome of L. braziliensis contains 52 amastin genes belonging to all four previously described amastin subfamilies and that the expression of members of all subfamilies is upregulated in L. braziliensis amastigotes. Although primary sequence alignments showed no homology to any known protein sequence, homology searches based on secondary structure predictions indicate that amastins are related to claudins, a group of proteins that are components of eukaryotic tight junction complexes. By knocking-down the expression of δ-amastins in L. braziliensis, their essential role during infection became evident. δ-amastin knockdown parasites showed impaired growth after in vitro infection of mouse macrophages and completely failed to produce infection when inoculated in BALB/c mice, an attenuated phenotype that was reverted by the re-expression of an RNAi-resistant amastin gene. Further highlighting their essential role in host-parasite interactions, electron microscopy analyses of macrophages infected with amastin knockdown parasites showed significant alterations in the tight contact that is normally observed between the surface of wild type amastigotes and the membrane of the parasitophorous vacuole.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/genética , Macrófagos/parasitologia , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Modelos Animais de Doenças , Leishmania braziliensis/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Transfecção , Virulência
19.
PLoS Pathog ; 10(12): e1004399, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474314

RESUMO

Trypanosomatids are unicellular protozoans of medical and economical relevance since they are the etiologic agents of infectious diseases in humans as well as livestock. Whereas Trypanosoma cruzi and different species of Leishmania are obligate intracellular parasites, Trypanosoma brucei and other trypanosomatids develop extracellularly throughout their entire life cycle. After their genomes have been sequenced, various comparative genomic studies aimed at identifying sequences involved with host cell invasion and intracellular survival have been described. However, for only a handful of genes, most of them present exclusively in the T. cruzi or Leishmania genomes, has there been any experimental evidence associating them with intracellular parasitism. With the increasing number of published complete genome sequences of members of the trypanosomatid family, including not only different Trypanosoma and Leishmania strains and subspecies but also trypanosomatids that do not infect humans or other mammals, we may now be able to contemplate a slightly better picture regarding the specific set of parasite factors that defines each organism's mode of living and the associated disease phenotypes. Here, we review the studies concerning T. cruzi and Leishmania genes that have been implicated with cell invasion and intracellular parasitism and also summarize the wealth of new information regarding the mode of living of intracellular parasites that is resulting from comparative genome studies that are based on increasingly larger trypanosomatid genome datasets.


Assuntos
Doença de Chagas/genética , Genes de Protozoários , Leishmania/genética , Leishmaniose/genética , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/genética , Tripanossomíase Africana/genética , Animais , Bases de Dados Genéticas , Humanos
20.
J Microbiol ; 52(4): 350-3, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24535738

RESUMO

Chromobacterium violaceum, a component of tropical soil microbiota, is an opportunistic pathogenic bacterium that can infect humans and other animals. In addition to identifying a large number of genes that demonstrate the vast biotechnological potential of this bacterium, genome sequencing revealed several virulence factors, including different cytolysins, which can be related to its pathogenicity. Here we confirmed these predictions from genomic analyses by identifying, through mass spectrometry, proteins present in the culture supernatant of C. violaceum that may constitute secreted virulence factors. Among them, we identified a secreted collagenase and the product of a gene with sequence similarity to previously characterized bacterial porins.


Assuntos
Chromobacterium/metabolismo , Meios de Cultura/química , Fatores de Virulência/análise , Animais , Chromobacterium/genética , Humanos , Espectrometria de Massas , Microbiologia do Solo , Clima Tropical , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA