Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535691

RESUMO

Second-generation thin-film Cu(In, Ga)Se2 (CIGS) solar cells are a well-established photovoltaic technology with a record power conversion efficiency of 23.6%. However, their reliance on critical raw materials, such as In and Ga, requires new approaches to reduce the amount of critical raw materials employed. The micro-concentrator concept involves the combination of thin-film photovoltaic technology with concentrator photovoltaic technology. This approach reduces the size of the solar cell to the micrometer range and uses optical concentration to collect sunlight from a larger area, focusing it onto micro solar cells. This work is devoted to the development of a process for manufacturing pre-structured substrates with regular arrays of holes with 200 and 250 µm diameters inside a SiOx insulating matrix. Subsequently, a Cu-In-Ga precursor is deposited by sputtering, followed by photoresist lift-off and the application of a Cu-In-Ga thermal annealing at 500 °C to improve precursor quality and assess pre-structured substrate stability under elevated temperatures. Finally, a two-stage selenization process leads to the formation of CIGS absorber micro-dots. This study presents in detail the fabrication process and explores the feasibility of a bottom-up approach using pre-structured substrates, addressing challenges encountered during fabrication and providing insights for future improvements in CIGS absorber materials.

2.
Nanomaterials (Basel) ; 12(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35630901

RESUMO

Aging by oxidation of asphalt roadway material promotes changes in its physical, chemical, and rheological properties, affecting its hardening and accelerating the degradation of its corresponding asphalt mixture. Titanium dioxide (TiO2) has been applied in engineering investigations to promote anti-aging and photocatalytic properties. In this study, a commercial binder was modified with nano-TiO2 (using contents of 0.1, 0.25, 0.5, 1, 2, 3, and 6%). It was evaluated by physicochemical and rheological tests (penetration, softening point, mass loss, dynamic viscosity, rheology, and Fourier transform infrared spectroscopy-FTIR) before and after aging by rolling thin-film oven test (RTFOT) and pressure aging vessel (PAV). The results indicated that incorporating nano-TiO2 mitigates binder aging, pointing out 0.25% as an optimum modification content for the investigated asphalt binder.

3.
Sensors (Basel) ; 21(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34770624

RESUMO

This work describes the development of a capacitive-type sensor created from nanoporous anodic aluminium oxide (NP-AAO) prepared by the one-step anodization method conducted in potentiostatic mode and performed in a low-cost homemade system. A series of samples were prepared via an anodization campaign carried out on different acid electrolytes, in which the anodization parameters were adjusted to investigate the effect of pore size and porosity on the capacitive sensing performance. Two sensor test cases are investigated. The first case explores the use of highly uniform NP-AAO structures for humidity sensing applications while the second analyses the use of NP-AAO as a capacitive touch sensor for biological applications, namely, to detect the presence of small "objects" such as bacterial colonies of Escherichia Coli. A mathematical model based on equivalent electrical circuits was developed to evaluate the effect of humidity condensation (inside the pores) on the sensor capacitance and also to estimate the capacitance change of the sensor due to pore blocking by the presence of a certain number of bacterial microorganisms. Regarding the humidity sensing test cases, it was found that the sensitivity of the sensor fabricated in a phosphoric acid solution reaches up to 39 (pF/RH%), which is almost three times higher than the sensor fabricated in oxalic acid and about eight times higher than the sensor fabricated in sulfuric acid. Its improved sensitivity is explained in terms of the pore size effect on the mean free path and the loss of Brownian energy of the water vapour molecules. Concerning the touch sensing test case, it is demonstrated that the NP-AAO structures can be used as capacitive touch sensors because the magnitude of the capacitance change directly depends on the number of bacteria that cover the nanopores; the fraction of the electrode area activated by bacterial pore blocking is about 4.4% and 30.2% for B1 (E. Coli OD600nm = 0.1) and B2 (E. Coli OD600nm = 1) sensors, respectively.


Assuntos
Escherichia coli , Tato , Óxido de Alumínio , Eletrodos , Umidade
4.
J Nanosci Nanotechnol ; 13(2): 1381-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646642

RESUMO

ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT-500 degrees C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 degrees C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 degrees C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.

5.
Nanoscale Res Lett ; 6(1): 301, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21711813

RESUMO

Thermochromic VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC and pulsed-DC magnetron sputtering. The influence of substitutional doping of V by higher valence cations, such as W, Mo, and Nb, and respective contents on the crystal structure of VO2 is evaluated. Moreover, the effectiveness of each dopant element on the reduction of the intrinsic transition temperature and infrared modulation efficiency of VO2 is discussed. In summary, all the dopant elements--regardless of the concentration, within the studied range-- formed a solid solution with VO2, which was the only compound observed by X-ray diffractometry. Nb showed a clear detrimental effect on the crystal structure of VO2. The undoped films presented a marked thermochromic behavior, specially the one prepared by pulsed-DC sputtering. The dopants effectively decreased the transition of VO2 to the proximity of room temperature. However, the IR modulation efficiency is markedly affected as a consequence of the increased metallic character of the semiconducting phase. Tungsten proved to be the most effective element on the reduction of the semiconducting-metal transition temperature, while Mo and Nb showed similar results with the latter being detrimental to the thermochromism.

6.
J Nanosci Nanotechnol ; 10(2): 1393-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20352805

RESUMO

In this study Mo-doped VO2 thin films have successfully been grown on SiO2-coated float glass by reactive DC magnetron sputtering. Structural analyses, carried out at room temperature, revealed single-phase monoclinic VO2 with preferred crystal orientation in the (002) direction, regardless the Mo doping concentration. The surface morphology of the films revealed elongated grains dispersed randomly with decreasing sizes for higher Mo doping concentrations. The measured roughness parameters showed an opposite tendency, i.e., increased for higher Mo doping contents. The optical analyses showed films with maximum optical transparencies in the visible range from 35 to 45% and decreased IR modulation capacity from 36 to 25% with increasing Mo content from 3 to 11%. The Mo dopant concentration in the film was found to have a linear influence on the phase transition temperatures, showing a decrease of about 3 degrees C per at% of Mo. Phase transition temperatures as low as 32 degrees C were obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...