Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1859: 11-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30421222

RESUMO

The demand for understanding the roles genes play in biological systems has steered the biosciences into the direction the metabolome, as it closely reflects the metabolic activities within a cell. The importance of the metabolome is further highlighted by its ability to influence the genome, transcriptome, and proteome. Consequently, metabolomic information is being used to understand microbial metabolic networks. At the forefront of this work is mass spectrometry, the most popular metabolomics measurement technique. Mass spectrometry-based metabolomic analyses have made significant contributions to microbiological research in the environment and human disease. In this chapter, we break down the technical aspects of mass spectrometry-based metabolomics and discuss its application to microbiological research.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Métodos Analíticos de Preparação de Amostras/instrumentação , Métodos Analíticos de Preparação de Amostras/métodos , Archaea/metabolismo , Bactérias/metabolismo , Análise de Dados , Mineração de Dados/métodos , Espectrometria de Massas/instrumentação , Redes e Vias Metabólicas/genética , Metaboloma/fisiologia , Metabolômica/instrumentação , Microbiota/fisiologia , Leveduras/metabolismo
2.
Plant Cell Physiol ; 57(3): 568-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26858288

RESUMO

Lignin poses a major challenge in the processing of plant biomass for agro-industrial applications. For bioengineering purposes, there is a pressing interest in identifying and characterizing the enzymes responsible for the biosynthesis of lignin. Hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyl transferase (HCT; EC 2.3.1.133) is a key metabolic entry point for the synthesis of the most important lignin monomers: coniferyl and sinapyl alcohols. In this study, we investigated the substrate promiscuity of HCT from a bryophyte (Physcomitrella) and from five representatives of vascular plants (Arabidopsis, poplar, switchgrass, pine and Selaginella) using a yeast expression system. We demonstrate for these HCTs a conserved capacity to acylate with p-coumaroyl-CoA several phenolic compounds in addition to the canonical acceptor shikimate normally used during lignin biosynthesis. Using either recombinant HCT from switchgrass (PvHCT2a) or an Arabidopsis stem protein extract, we show evidence of the inhibitory effect of these phenolics on the synthesis of p-coumaroyl shikimate in vitro, which presumably occurs via a mechanism of competitive inhibition. A structural study of PvHCT2a confirmed the binding of a non-canonical acceptor in a similar manner to shikimate in the active site of the enzyme. Finally, we exploited in Arabidopsis the substrate flexibility of HCT to reduce lignin content and improve biomass saccharification by engineering transgenic lines that overproduce one of the HCT non-canonical acceptors. Our results demonstrate conservation of HCT substrate promiscuity and provide support for a new strategy for lignin reduction in the effort to improve the quality of plant biomass for forage and cellulosic biofuels.


Assuntos
Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Plantas/enzimologia , Ácido Chiquímico/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/química , Aciltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Sítios de Ligação , Biomassa , Vias Biossintéticas , Metabolismo dos Carboidratos , Hidroxibenzoatos/metabolismo , Modelos Moleculares , Oxirredução , Plantas Geneticamente Modificadas , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
PLoS One ; 10(10): e0138972, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26430899

RESUMO

Biological synthesis of pharmaceuticals and biochemicals offers an environmentally friendly alternative to conventional chemical synthesis. These alternative methods require the design of metabolic pathways and the identification of enzymes exhibiting adequate activities. Cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates are natural metabolites which possess beneficial activities for human health, and the search is expanding for novel derivatives that might have enhanced biological activity. For example, biosynthesis in Dianthus caryophyllus is catalyzed by hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/ benzoyltransferase (HCBT), which couples hydroxycinnamoyl-CoAs and benzoyl-CoAs to anthranilate. We recently demonstrated the potential of using yeast (Saccharomyces cerevisiae) for the biological production of a few cinnamoyl anthranilates by heterologous co-expression of 4-coumaroyl:CoA ligase from Arabidopsis thaliana (4CL5) and HCBT. Here we report that, by exploiting the substrate flexibility of both 4CL5 and HCBT, we achieved rapid biosynthesis of more than 160 cinnamoyl, dihydrocinnamoyl, and benzoyl anthranilates in yeast upon feeding with both natural and non-natural cinnamates, dihydrocinnamates, benzoates, and anthranilates. Our results demonstrate the use of enzyme promiscuity in biological synthesis to achieve high chemical diversity within a defined class of molecules. This work also points to the potential for the combinatorial biosynthesis of diverse and valuable cinnamoylated, dihydrocinnamoylated, and benzoylated products by using the versatile biological enzyme 4CL5 along with characterized cinnamoyl-CoA- and benzoyl-CoA-utilizing transferases.


Assuntos
Técnicas de Química Combinatória , Saccharomyces cerevisiae/metabolismo , ortoaminobenzoatos/metabolismo , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA