Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 555: 489-497, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401481

RESUMO

A practical and sustainable method to prepare polymeric hollow microcapsules (PHMs) using cellulose nanocrystal (CNC) stabilized Pickering emulsion polymerization was developed. Pristine CNCs hydrolyzed from wood pulp are hydrophilic and could be employed as emulsifiers to prepare oil-in-water (O/W) Pickering emulsions. The O/W Pickering emulsions were used as templates for the Pickering emulsion polymerization of hydrophobic monomers inside the emulsion droplets. The crosslinked hydrophobic polymers phase separated and partitioned to the interface of the Pickering emulsion, leading to the formation of hydrophobic PHMs. Correspondingly, cinnamate modified CNCs with less surface hydrophilicity were employed as emulsifiers to obtain water-in-oil (W/O) inverse Pickering emulsions, which were then used as templates for inverse Pickering emulsion polymerization of hydrophilic monomers to prepare hydrophilic PHMs. Therefore, both hydrophobic and hydrophilic PHMs could be obtained via this approach. Herein, polystyrene, poly(4-vinylpyridine), and poly(N-isopropyl acrylamide) hollow microcapsules were prepared as models, where the size, crosslinking density, shell structure and stimuli-responsive properties of PHMs could be tuned by varying the synthesis parameters.

2.
Dalton Trans ; (21): 4136-45, 2009 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-19452062

RESUMO

Organic-inorganic hybrid materials can be prepared dispersing organic species into well-defined inorganic nanoblocks. This paper describes the immobilization of natural dyes from the extract of the Brazilian açaí-fruit into two types of layered hexaniobate precursors derived from H(2)K(2)Nb(6)O(17): (i) colloidal dispersion of niobate exfoliated nanoparticles and (ii) niobate pre-intercalated with tetraethylammonium cations (TEA(+)). The restacking of exfoliated particles in the presence of açaí anthocyanins promotes their intercalation and produces stacked layers showing large basal spacing (ca. 50 A). The TEA(+) pre-intercalated niobate provides particles with lower content of dye species than the exfoliated precursor but with higher degree of organization and regularity according to X-ray diffraction data and images obtained by electron microscopies. Vibrational (FTIR and Raman) and (13)C NMR spectroscopies indicate the presence of flavylium cations in the hybrid materials and spectral profiles characteristic of glycosylated anthocyanidins. According to thermal analysis results, the purplish hybrids materials are more stable than the free açaí-dyes. One hybrid sample was heated under air up to 170 degrees C and maintained at this temperature for 240 min. No weight loss events were observed and the sample retained its original color, indicating that the intercalation of anthocyanin into hexaniobate increases its thermal stability. Considering the structural, chemical, optical and thermal properties of the synthesized hybrid materials, they might be good candidates to be investigated for future specialized applications.


Assuntos
Antocianinas/química , Arecaceae/química , Frutas/química , Nióbio/química , Óxidos/química , Corantes/química , Microscopia Eletrônica , Extratos Vegetais/química , Análise Espectral , Temperatura , Tetraetilamônio/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...