Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; : 1-12, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34839789

RESUMO

In this work, an iron ore tailings sample (IOT), collected from a tailings dam in Minas Gerais, Brazil, was characterized. The IOT presented point of zero charge of ∼ 6, specific surface area of 4 m2 g-1, and was mainly composed of hematite and quartz. Subsequently, experiments were performed to evaluate the adsorption of an anionic dye, Direct Red 80 (DR80), and a cationic dye, Methylene Blue (MB), by the IOT, studying the effects of its dose (doseIOT) and the solution initial pH (pH0). The DR80 removal increased with the decrease of the pH0 while the opposite effect occurred in the experiments with the MB, suggesting the process is governed by the adsorption resulting from electrostatic forces. The increase in the doseIOT increased the DR80 and MB removal, which can be attributed to the greater availability of adsorption sites. Pseudo-second order kinetic (R2 > 0.9994) and the Langmuir equilibrium isotherm (R2 > 0.9842) models described well the DR80 adsorption by the IOT, being the reaction rate and maximum adsorption capacity higher at lower pH0. In a regeneration experiment, it was possible to desorb almost entirely the DR80 using a NaOH solution. Additionally, the regenerated IOT was able to adsorb the DR80, demonstrating its reusability. In a preliminary assay, the IOT decreased the colour of the textile wastewater sample at pH0 3. Therefore, the results indicate the potential use of IOT for removing electric-charged pollutants by adsorption, especially anionic ones under acidic conditions.

2.
Environ Technol ; 41(4): 529-538, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30051768

RESUMO

Alkaline treatment is widely used to reduce pathogens in sewage sludge in developing countries and guarantee that it is safe for use in agriculture. The aim of this study was to investigate the effect of alkaline treatment applied to waste-activated (WAS) and Upflow Anaerobic Sludge Blanket (UASB)-sludge on the bacterial community, pathogens (viable helminths eggs and Salmonella spp), and antibiotic resistance genes (ARG). The bacterial community structure was examined through denaturing gel gradient electrophoresis (DGGE), targeting 16S rRNA genes. Polymerase chain reaction (PCR) was applied to evaluate the presence of several ARGs. The conducted alkaline experiment consisted of adding hydrated lime (Ca(OH)2) to sewage sludges. Samples were taken before and after 2, 24, 48, and 72 hours of treatment. Alkaline treatment changed considerably the bacterial community structure and after 24 hours, shifts in bacterial profiles were more pronounced in the UASB sludge sample than in WAS. Some bacteria remained under extreme pH conditions (pH > 12), such as Azospira oryzae and Dechloromonas denitrificans in the WAS samples, and Geothrix and Geobacter in the UASB sludge samples. The values of pathogens and indicators in the sludge after 24 hours of alkaline treatment meet sanitary law regulations and thus the sludges could have the potential to agricultural distribution. It is important to highlight that ARG, which are not currently present in sanitary regulations, were detected in the sludge samples after the alkaline treatment, which could be a concern for human health.


Assuntos
Antibacterianos , Esgotos , Agricultura , Bactérias , Resistência Microbiana a Medicamentos , Genes Bacterianos , Humanos , RNA Ribossômico 16S
3.
Chemosphere ; 234: 402-408, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31228843

RESUMO

Phytoremediation is a technique in which plants are used to treat contaminated media. The objective of this study was to monitor the influence of the parameters pH, phosphate concentration, and nitrate concentration in the process of arsenic absorption by Lemna valdiviana Phil. The response surface methodology was used to analyze the data to subsidize actions that maximize the phytoremediation process. A central composite rotational design (CCRD) was used with 3 variables including 6 axial points and 6 repetitions at the central point, totaling 20 trials. The plants were exposed to a constant concentration of arsenic in the optimization test of 0.5 mg L-1 (NaAsO2) and varied levels of pH, P-PO4, and N-NO3 in a period of 7 d. At the end of the experiment, the mass of arsenic removed from water and arsenic accumulated in the plants, the arsenic species present, the relative growth rate of plants (RGR), the tolerance index (TI), and the bioaccumulation factor (BAF) were calculated. Lemna valdiviana absorbed a greater amount of As when cultivated under pH conditions between 6.3 and 7.0, readily available phosphorus (P-PO4) concentration of 0.0488 mmol L-1, and nitrogen in the form of 7.9 mmol L-1 nitrate. Under these conditions, the plants were able to accumulate 1190 mg kg-1 As (in dry weight) from the aqueous media and reduce 82% of its initial concentration. Therefore, Lemna valdiviana has been shown to be an arsenic bioaccumulating macrophyte with high phytoremediation potential for media contaminated with the metalloid.


Assuntos
Araceae/metabolismo , Arsênio/farmacocinética , Biodegradação Ambiental , Poluentes Químicos da Água/metabolismo , Arsênio/análise , Concentração de Íons de Hidrogênio , Nitratos , Fosfatos , Poluentes Químicos da Água/análise
4.
Int J Phytoremediation ; 20(11): 1129-1135, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30156918

RESUMO

This study aimed to evaluate the pH, phosphate, and nitrate in the process of arsenic absorption by Eichhornia crassipes (water hyacinth), using the surface response methodology, in order to optimize the process. The plants were exposed to a concentration of arsenic of 0.5 mg L-1 (NaAsO2) over a period of 10 days. The results indicated optimal levels for the absorption of arsenic by E. crassipes at pH equal to 7.5, absence of phosphate, and minimum nitrate level of 0.0887 mmol L-1. For the tested concentration, E. crassipes was able to accumulate 498.4 mg kg-1 of As (dry base) in its plant tissue and to reduce 83% of the initial concentration present in the aqueous medium where it was cultivated. The concentration of phosphorus in solution linearly increased the phosphorus content in the plants and negatively influenced the absorption of arsenic. The concentration of 0.5 mg L-1 of As did not significantly affect the relative growth rate (RGR) and the tolerance index (TI). 94% of As (III) initially solubilized in water was converted by the end of the experiment period into As (V). The water hyacinth was important in the phytoremediation of arsenic when cultivated under optimal conditions for its removal.


Assuntos
Arsênio/análise , Eichhornia , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...