Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792238

RESUMO

A new cooperative photoredox catalytic system, [RuII(trpy)(bpy)(H2O)][3,3'-Co(8,9,12-Cl3-1,2-C2B9H8)2]2, 5, has been synthesized and fully characterized for the first time. In this system, the photoredox catalyst [3,3'-Co(8,9,12-Cl3-1,2-C2B9H8)2]-[Cl6-1]-, a metallacarborane, and the oxidation catalyst [RuII(trpy)(bpy)(H2O)]2+, 2 are linked by non-covalent interactions. This compound, along with the one previously synthesized by us, [RuII(trpy)(bpy)(H2O)][(3,3'-Co(1,2-C2B9H11)2]2, 4, are the only examples of cooperative molecular photocatalysts in which the catalyst and photosensitizer are not linked by covalent bonds. Both cooperative systems have proven to be efficient photocatalysts for the oxidation of alkenes in water through Proton Coupled Electron Transfer processes (PCETs). Using 0.05 mol% of catalyst 4, total conversion values were achieved after 15 min with moderate selectivity for the corresponding epoxides, which decreases with reaction time, along with the TON values. However, with 0.005 mol% of catalyst, the conversion values are lower, but the selectivity and TON values are higher. This occurs simultaneously with an increase in the amount of the corresponding diol for most of the substrates studied. Photocatalyst 4 acts as a photocatalyst in both the epoxidation of alkenes and their hydroxylation in aqueous medium. The hybrid system 5 shows generally higher conversion values at low loads compared to those obtained with 4 for most of the substrates studied. However, the selectivity values for the corresponding epoxides are lower even after 15 min of reaction. This is likely due to the enhanced oxidizing capacity of CoIV in catalyst 5, resulting from the presence of more electron-withdrawing substituents on the metallacarborane platform.

2.
ACS Appl Mater Interfaces ; 16(1): 507-519, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38114421

RESUMO

A ruthenium aqua photoredox catalyst has been successfully heterogeneneized on graphene oxide (GO@trans-fac-3) and graphite rods (GR@trans-fac-3) for the first time and have proven to be sustainable and easily reusable systems for the photooxidation of alcohols in water, in mild and green conditions. We report here the synthesis and total characterization of two Ru(II)-polypyridyl complexes, the chlorido trans-fac-[RuCl(bpea-pyrene)(bpy)](PF6) (trans-fac-2) and the aqua trans-fac-[Ru(bpea-pyrene)(bpy)OH2](PF6)2 (trans-fac-3), both containing the N-tridentate, 1-[bis(pyridine-2-ylmethyl)amino]methylpyrene (bpea-pyrene), and 2,2'-bipyridine (bpy) ligands. In both complexes, only a single isomer, the trans-fac, has been detected in solution and in the solid state. The aqua complex trans-fac-3 displays bielectronic redox processes in water, assigned to the Ru(IV/II) couple. The trans-fac-3 complex has been heterogenized on different types of supports, (i) on graphene oxide (GO) through π-stacking interactions between the pyrene group of the bpea-pyrene ligand and the GO and (ii) both on glassy carbon electrodes (GC) and on graphite rods (GR) through oxidative electropolymerization of the pyrene group, which yield stable heterogeneous photoredox catalysts. GO@trans-fac-3- and GR/poly trans-fac-3-modified electrodes were fully characterized by spectroscopic and electrochemical methods. Trans-fac-3 and GO@trans-fac-3 photocatalysts (without a photosensitizer) showed good catalytic efficiency in the photooxidation of alcohols in water under mild conditions and using visible light. Both photocatalysts display high selectivity values (>99%) even for primary alcohols in accordance with the presence of two-electron transfer processes (2e-/2H+). GO@trans-fac-3 keeps intact its homogeneous catalytic properties but shows an enhancement in yields. GO@trans-fac-3 can be easily recycled by filtration and reused for up to five runs without any significant loss of catalytic activity. Graphite rods (GR@trans-fac-3) were also evaluated as heterogeneous photoredox catalysts showing high turnover numbers (TON) and selectivity values.

3.
Phys Chem Chem Phys ; 25(41): 27942-27948, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37823330

RESUMO

Experimental results show that the presence of a concentration gradient of certain nano-ions (most notably cobaltabisdicarbollide ([o-COSAN]- anions), induce a current across intact artificial phospholipid bilayers in spite of the high Born free energy estimated for these ions. The mechanism underlying this observed translocation of nano-anions across membranes has yet to be determined. Here we show, using molecular dynamics simulations, that the permeation of [o-COSAN]- anions across a lipid bilayer proceeds in a cooperative manner. Single nano-ions can enter the bilayer but permeation is hampered by a free energy barrier of about 8kBT. The interaction between these nano-ions inside a leaflet induces a flip-flop translocation mechanism with the formation of transient, elongated structure inside the membrane. This cooperative flip-flop allows an efficient distribution of [o-COSAN]- anions in both leaflets of the bilayer. These results suggest the existence of a new mechanism for permeation of nano-ions across lipid membranes, relevant for those that have the appropriate self-assembly character.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Bicamadas Lipídicas/química , Fosfolipídeos/química , Simulação de Dinâmica Molecular , Ânions/química
4.
Chemistry ; 29(69): e202302448, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37702301

RESUMO

The homolytic elimination of two H atoms from two adjacent carbons in benzene results in the aromatic product o-benzyne. In a similar way, the homolytic elimination of two H atoms from the two adjacent carbons in 1,2-C2 B10 H12 results in the aromatic product o-carboryne. In this work, we provide experimental and computational evidences that despite the similarity of o-carboryne and o-benzyne, the nature of the C-C bond generated between two adjacent carbons that lose H atoms is different. While in o-benzyne the C-C bond behaves as a triple bond, in o-carboryne the C-C bond is a double bond. Therefore, we must stop naming 1,2-dehydro-o-carboryne as o-carboryne but instead call it o-carborene.

5.
J Am Chem Soc ; 145(41): 22527-22538, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37728951

RESUMO

3D-aromatic molecules with (distorted) tetrahedral, octahedral, or spherical structures are much less common than typical 2D-aromatic species or even 2D-aromatic-in-3D systems. Closo boranes, [BnHn]2- (5 ≤ n ≤ 14) and carboranes are examples of compounds that are singly 3D-aromatic, and we now explore if there are species that are doubly 3D-aromatic. The most widely known example of a species with double 2D-aromaticity is the hexaiodobenzene dication, [C6I6]2+. This species shows π-aromaticity in the benzene ring and σ-aromaticity in the outer ring formed by the iodine substituents. Inspired by the hexaiodobenzene dication example, in this work, we explore the potential for double 3D-aromaticity in [B12I12]0/2+. Our results based on magnetic and electronic descriptors of aromaticity together with 11B{1H} NMR experimental spectra of boron-iodinated o-carboranes suggest that these two oxidized forms of a closo icosahedral dodecaiodo-dodecaborate cluster, [B12I12] and [B12I12]2+, behave as doubly 3D-aromatic compounds. However, an evaluation of the energetic contribution of the potential double 3D-aromaticity through homodesmotic reactions shows that delocalization in the I12 shell, in contrast to the 10σ-electron I62+ ring in the hexaiodobenzene dication, does not contribute to any stabilization of the system. Therefore, the [B12I12]0/2+ species cannot be considered as doubly 3D-aromatic.

6.
J Mater Chem B ; 11(35): 8422-8432, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37563960

RESUMO

Visualization of a protein in its native form and environment without any interference has always been a challenging task. Contrary to the assumption that protein surfaces are smooth, they are in fact highly irregular with undulating surfaces. Hence, in this study, we have tackled this ambiguous nature of the 'surface' of a protein by considering the 'effective' protein surface (EPS) with respect to its interaction with the geometrically well-defined and structurally inert anionic molecule [3,3'-Co(1,2-C2B9H11)2]-, abbreviated as [o-COSAN]-, whose stability, propensity for amine residues, and self-assembling abilities are well reported. This study demonstrates the intricacies of protein surfaces exploiting simple electrochemical measurements using a 'small molecule' redox-active probe. This technique offers the advantage of not utilizing any harsh experimental conditions that could alter the native structure of the protein and hence the protein integrity is retained. Identification of the amino acid residues which are most involved in the interactions with [3,3'-Co(1,2-C2B9H11)2]- and how a protein's environment affects these interactions can help in gaining insights into how to modify proteins to optimize their interactions particularly in the fields of drug design and biotechnology. In this research, we have demonstrated that [3,3'-Co(1,2-C2B9H11)2]- anionic small molecules are excellent candidates for studying and visualizing protein surfaces in their natural environment and allow proteins to be classified according to the surface composition, which imparts their properties. [3,3'-Co(1,2-C2B9H11)2]- 'viewed' each protein surface differently and hence has the potential to act as a simple and easy to handle cantilever for measuring and picturing protein surfaces.


Assuntos
Aminoácidos , Proteínas de Membrana , Eletroquímica , Aminas
7.
J Am Chem Soc ; 145(25): 13730-13741, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37338458

RESUMO

The removal of organophosphorus (OP) herbicides from water has been studied using adsorptive removal, chemical oxidation, electrooxidation, enzymatic degradation, and photodegradation. The OP herbicide glyphosate (GP) is one of the most used herbicides worldwide, leading to excess GP in wastewater and soil. GP is commonly broken down in environmental conditions to compounds such as aminomethylphosphonic acid (AMPA) or sarcosine, with AMPA having a longer half-life and similar toxicity to GP. Metal-organic frameworks (MOFs) are excellent materials for purifying OP herbicides from water due to their ability to combine adsorption and photoactivity within one material. Herein, we report the use of a robust Zr-based MOF with a meta-carborane carboxylate ligand (mCB-MOF-2) to examine the adsorption and photodegradation of GP. The maximum adsorption capacity of mCB-MOF-2 for GP was determined to be 11.4 mmol/g. Non-covalent intermolecular forces between the carborane-based ligand and GP within the micropores of mCB-MOF-2 are thought to be responsible for strong binding affinity and capture of GP. After 24 h of irradiation with ultraviolet-visible (UV-vis) light, mCB-MOF-2 selectively converts 69% of GP to sarcosine and orthophosphate, following the C-P lyase enzymatic pathway and biomimetically photodegrading GP. Circumventing the production of AMPA is desirable, as it has a longer half-life and similar toxicity to GP. The exceptional adsorption capacity of GP by mCB-MOF-2 and its biomimetic photodegradation to non-toxic sarcosine make it a promising material for removing OP herbicides from water.

8.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298925

RESUMO

Traditionally, drugs were obtained by extraction from medicinal plants, but more recently also by organic synthesis. Today, medicinal chemistry continues to focus on organic compounds and the majority of commercially available drugs are organic molecules, which can incorporate nitrogen, oxygen, and halogens, as well as carbon and hydrogen. Aromatic organic compounds that play important roles in biochemistry find numerous applications ranging from drug delivery to nanotechnology or biomarkers. We achieved a major accomplishment by demonstrating experimentally/theoretically that boranes, carboranes, as well as metallabis(dicarbollides), exhibit global 3D aromaticity. Based on the stability-aromaticity relationship, as well as on the progress made in the synthesis of derivatized clusters, we have opened up new applications of boron icosahedral clusters as key components in the field of novel healthcare materials. In this brief review, we present the results obtained at the Laboratory of Inorganic Materials and Catalysis (LMI) of the Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) with icosahedral boron clusters. These 3D geometric shape clusters, the semi-metallic nature of boron and the presence of exo-cluster hydrogen atoms that can interact with biomolecules through non-covalent hydrogen and dihydrogen bonds, play a key role in endowing these compounds with unique properties in largely unexplored (bio)materials.


Assuntos
Boranos , Boro , Boro/química , Nanomedicina , Preparações Farmacêuticas , Hidrogênio
9.
Mol Pharm ; 20(5): 2702-2713, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013916

RESUMO

Glioblastoma (GBM), as the most central nervous system (CNS) intractable disease, has spoiled millions of lives due to its high mortality. Even though several efforts have been made, the existing treatments have had limited success. In this sense, we studied a lead compound, the boron-rich selective epidermal growth factor receptor (EGFR)-inhibitor hybrid 1, as a potential drug for GBM treatment. For this end, we analyzed the in vitro activity of hybrid 1 in a glioma/primary astrocytes coculture, studying cellular death types triggered by treatment with this compound and its cellular localizations. Additionally, hybrid 1 concentrated boron in glioma cells selectively and more effectively than the boron neutron capture therapy (BNCT)-clinical agent 10B-l-boronophenylalanine and thus displayed a better in vitro-BNCT effect. This encouraged us to analyze hybrid 1 in vivo. Therefore, immunosuppressed mice bearing U87 MG human GBM were treated with both 1 and 1 encapsulated in a modified liposome (recognized by brain-blood barrier peptide transporters), and we observed a potent in vivo per se antitumor activity (tumor size decrease and animal survival increase). These data demonstrate that 1 could be a promising new targeted therapy for GBM.


Assuntos
Terapia por Captura de Nêutron de Boro , Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Humanos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Boro , Compostos de Boro/farmacologia , Compostos de Boro/uso terapêutico , Glioma/tratamento farmacológico , Glioma/radioterapia , Glioma/metabolismo , Glioblastoma/tratamento farmacológico
10.
Molecules ; 27(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36500404

RESUMO

This work is a mini-review highlighting the relevance of the θ metallabis(dicarbollide) [3,3'-Co(1,2-C2B9H11)2]- with its peculiar and differentiating characteristics, among them the capacity to generate hydrogen and dihydrogen bonds, to generate micelles and vesicles, to be able to be dissolved in water or benzene, to have a wide range of redox reversible couples and many more, and to use these properties, in this case, for producing potentiometric membrane sensors to monitor amine-containing drugs or other nitrogen-containing molecules. Sensors have been produced with this monoanionic cluster [3,3'-Co(1,2-C2B9H11)2]-. Other monoanionic boron clusters are also discussed, but they are much fewer. It is noteworthy that most of the electrochemical sensor species incorporate an ammonium cation and that this cation is the species to be detected. Alternatively, the detection of the borate anion itself has also been studied, but with significantly fewer examples. The functions of the borate anion in the membrane are different, even as a doping agent for polypyrrole which was the conductive ground on which the PVC membrane was deposited. Apart from these cases related to closo borates, the bulk of the work has been devoted to sensors in which the θ metallabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]- is the key element. The metallabis (dicarbollide) anion, [3,3'-Co(1,2-C2B9H11)2]-, has many applications; one of these is as new material used to prepare an ion-pair complex with bioactive protonable nitrogen containing compounds, [YH]x[3,3'-Co(1,2-C2B9H11)2]y as an active part of PVC membrane potentiometric sensors. The developed electrodes have Nernstian responses for target analytes, i.e., antibiotics, amino acids, neurotransmitters, analgesics, for some decades of concentrations, with a short response time, around 5 s, a good stability of membrane over 45 days, and an optimal selectivity, even for optical isomers, to be used also for real sample analysis and environmental, clinical, pharmaceutical and food analysis.


Assuntos
Polímeros , Pirróis , Ionóforos/química , Concentração de Íons de Hidrogênio , Potenciometria , Eletrodos , Ânions , Boratos , Nitrogênio , Membranas Artificiais
11.
J Mater Chem B ; 10(47): 9794-9815, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36373493

RESUMO

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2-o-FESAN]-), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.


Assuntos
Boro , Prótons
12.
Nat Commun ; 13(1): 3844, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788134

RESUMO

A large number of 2D/2D and 3D/3D aromatic fusions that keep their aromaticity in the fused compounds have been synthesized. In addition, we have previously proven the electronic relationship between the 3D aromaticity of boron hydrides and the 2D aromaticity of PAHs. Here we report the possible existence of 3D/2D aromatic fusions that retain the whole aromaticity of the two units. Our conclusion is that such a 3D/2D aromatic combination is not possible due to the ineffective overlap between the π-MOs of the planar species and the n + 1 molecular orbitals in the aromatic cage that deter an effective electronic delocalization between the two fused units. We have also proven the necessary conditions for 3D/3D fusions to take place, and how aromaticity of each unit is decreased in 2D/2D and 3D/3D fusions.

13.
Chem Mater ; 34(10): 4795-4808, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35637791

RESUMO

Luminescent lanthanide metal-organic frameworks (Ln-MOFs) have been shown to exhibit relevant optical properties of interest for practical applications, though their implementation still remains a challenge. To be suitable for practical applications, Ln-MOFs must be not only water stable but also printable, easy to prepare, and produced in high yields. Herein, we design and synthesize a series of m CB-Eu y Tb 1-y (y = 0-1) MOFs using a highly hydrophobic ligand mCBL1: 1,7-di(4-carboxyphenyl)-1,7-dicarba-closo-dodecaborane. The new materials are stable in water and at high temperature. Tunable emission from green to red, energy transfer (ET) from Tb3+ to Eu3+, and time-dependent emission of the series of mixed-metal m CB-Eu y Tb 1-y MOFs are reported. An outstanding increase in the quantum yield (QY) of 239% of mCB-Eu (20.5%) in the mixed mCB-Eu0.1Tb0.9 (69.2%) is achieved, along with an increased and tunable lifetime luminescence (from about 0.5 to 10 000 µs), all of these promoted by a highly effective ET process. The observed time-dependent emission (and color), in addition to the high QY, provides a simple method for designing high-security anticounterfeiting materials. We report a convenient method to prepare mixed-metal Eu/Tb coordination polymers (CPs) that are printable from water inks for potential applications, among which anticounterfeiting and bar-coding have been selected as a proof-of-concept.

14.
Dalton Trans ; 51(18): 7188-7209, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35470838

RESUMO

The Na[3,3'-Fe(8-I-1,2-C2B9H10)2] and Na[2,2'-M(1,7-C2B9H11)] (M = Co3+, Fe3+) small molecules are synthesized and the X-ray structures of [(H3O)(H2O)5][2,2'-Co(1,7-C2B9H11)2] and [Cs(MeCN)][8,8'-I2-Fe(1,2 C2B9H10)2], both displaying a transoid conformation of the [M(C2B9)2]- framework, are reported. Importantly, the supramolecular structure of [(H3O)(H2O)5][2,2'-Co(1,7-C2B9H11)2] presents 2D layers leading to a lamellar arrangement of the anions while the cation layers form polymeric water rings made of six- and four-membered rings of water molecules connected via OH⋯H hydrogen bonds; B-H⋯O contacts connect the cationic and anionic layers. Herein, we highlight the influence of the ligand isomers (ortho-/meta-), the metal effect (Co3+/Fe3+) on the same isomer, as well as the influence of the presence of the iodine atoms on the physical-chemical and biological properties of these molecules as antimicrobial agents to tackle antibiotic-resistant bacteria, which were tested with four Gram-positive bacteria, five Gram-negative bacteria, and three Candida albicans strains that have been responsible for human infections. We have demonstrated an antimicrobial effect against Candida species (MIC of 2 and 3 nM for Na[3,3'-Co(8-I-1,2-C2B9H10)2] and Na[2,2'-Co(1,7-C2B9H11)2], respectively), and against Gram-positive and Gram-negative bacteria, including multiresistant MRSA strains (MIC of 6 nM for Na[3,3'-Co(8-I-1,2-C2B9H10)2]). The selectivity index for antimicrobial activity of Na[3,3'-Co(1,2-C2B9H11)2] and Na[3,3'-Co(8-I-1,2-C2B9H10)2] compounds is very high (165 and 1180, respectively), which reveals that these small anionic metallacarborane molecules may be useful to tackle antibiotic-resistant bacteria. Moreover, we have demonstrated that the outer membrane of Gram-negative bacteria constitutes an impermeable barrier for the majority of these compounds. Nonetheless, the addition of two iodine groups in the structure of the parent Na[3,3'-Co(1,2-C2B9H11)2] had an improved effect (3-7 times) against Gram-negative bacteria. Possibly the changes in their physical-chemical properties make the meta-isomers and the ortho-di-iodinated small molecules more permeable for crossing this barrier. It should be emphasized that the most active metallabis(dicarbollide) small molecules are both transoid conformers in contrast to the ortho- [3,3'-Co(1,2-C2B9H11)2]- that is cisoid. The fact that these small molecules cross the mammalian membrane and have antimicrobial properties but low toxicity for mammalian cells (high selectivity index, SI) represents a promising tool to treat infectious intracellular bacteria. Since there is an urgent need for antibiotic discovery and development, this study represents a relevant advance in the field.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Iodo , Animais , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Iodo/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana , Água
15.
Chem Commun (Camb) ; 58(26): 4196-4199, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35274113

RESUMO

Ferrocene and its derivatives have been extensively used as an internal reference in electrochemical processes. Yet, they possess limitations such as solvent restrictions that require chemical modifications. In this regard, we have studied the use of metallacarboranes [3,3'-M(1,2-C2B9H11)2]- (M = Co, Fe) as general internal reference systems and have proven their suitability by thoroughly investigating their electrochemical properties in both aqueous and organic electrolytes without any derivatization.

16.
Chem Commun (Camb) ; 58(25): 4016-4019, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35266927

RESUMO

A set of o-carborane-appended π-conjugated fluorophores and their light-emitting properties in the solid state are reported. The aggregation-induced emission enhancement (AIEE) exhibited for one of the fluorenyl derivatives paved the way to successfully preparing o-carborane-containing organic nanoparticles (NPs) homogeneously dispersed in aqueous media that maintain their luminescence properties. Notably, NPs processed as thin films also show high fluorescence efficiency, suggesting potential optical and optoelectronic applications.

17.
Angew Chem Int Ed Engl ; 61(22): e202200672, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35176201

RESUMO

Benzene and pyrene can be synthetically linked to [o-COSAN]- keeping their aromaticity. In contrast, naphthalene and anthracene are extruded in the same reaction. We have proven that extrusion is only favorable if the number of Clar's π-sextets remains constant. Thus, Clar has the answer to whether an attached polycyclic aromatic hydrocarbon to [o-COSAN]- is extruded or not.

18.
Dalton Trans ; 51(3): 1137-1143, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34939634

RESUMO

A new unsymmetric carborane-based dicarboxylic linker provided a 1D Cu2-paddle wheel coordination polymer (2) with much higher hydrolytic stability than the corresponding 2D Cu2-paddle wheel polymer (1), obtained from a related more symmetrical carborane-based linker. Both 1 and 2 were used as efficient heterogeneous catalysts for a model aza-Michael reaction but only 2 can be reused several times without significant degradation in catalytic activity.

19.
Biosensors (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36671906

RESUMO

As an antibody-free sensing membrane for the detection of the antibiotic tetracycline (TC), a liquid PVC membrane doped with the ion-pair tetracycline/θ-shaped anion [3,3'-Co(1,2-C2B9H11)2]- ([o-COSAN]-) was formulated and deposited on a SWCNT modified gold microelectrode. The chosen transduction technique was electrochemical impedance spectroscopy (EIS). The PVC membrane was composed of: the tetracycline/[o-COSAN]- ion-pair, a plasticizer. A detection limit of 0.3 pg/L was obtained with this membrane, using bis(2-ethylhexyl) sebacate as a plasticizer. The sensitivity of detection of tetracycline was five times higher than that of oxytetracycline and of terramycin, and 22 times higher than that of demeclocycline. A shelf-life of the prepared sensor was more than six months and was used for detection in spiked honey samples. These results open the way to having continuous monitoring sensors with a high detection capacity, are easy to clean, avoid the use of antibodies, and produce a direct measurement.


Assuntos
Oxitetraciclina , Plastificantes , Tetraciclina , Antibacterianos , Microeletrodos , Anticorpos
20.
Cancers (Basel) ; 13(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34944987

RESUMO

PURPOSE: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[o-COSAN] and Na[8,8'-I2-o-COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM. METHODS: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal Caenorhabditis elegans (C. elegans) at the L4-stage and using the eggs. RESULTS: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies. In vitro tests in U87 and T98G cells conclude that the amount of 10B inside the cells is enough for BNCT irradiation. BNCT becomes more effective on T98G after their incubation with Na[8,8'-I2-o-COSAN], whereas no apparent cell-killing effect was observed for untreated cells. CONCLUSIONS: These small molecules, particularly [8,8'-I2-o-COSAN]-, are serious candidates for BNCT now that the facilities of accelerator-based neutron sources are more accessible, providing an alternative treatment for resistant glioblastoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...