Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(8): e1011349, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39088561

RESUMO

Cellular processes require precise and specific gene regulation, in which continuous mRNA degradation is a major element. The mRNA degradation mechanisms should be able to degrade a wide range of different RNA substrates with high efficiency, but should at the same time be limited, to avoid killing the cell by elimination of all cellular RNA. RNase Y is a major endoribonuclease found in most Firmicutes, including Bacillus subtilis and Staphylococcus aureus. However, the molecular interactions that direct RNase Y to cleave the correct RNA molecules at the correct position remain unknown. In this work we have identified transcripts that are homologs in S. aureus and B. subtilis, and are RNase Y targets in both bacteria. Two such transcript pairs were used as models to show a functional overlap between the S. aureus and the B. subtilis RNase Y, which highlighted the importance of the nucleotide sequence of the RNA molecule itself in the RNase Y targeting process. Cleavage efficiency is driven by the primary nucleotide sequence immediately downstream of the cleavage site and base-pairing in a secondary structure a few nucleotides downstream. Cleavage positioning is roughly localised by the downstream secondary structure and fine-tuned by the nucleotide immediately upstream of the cleavage. The identified elements were sufficient for RNase Y-dependent cleavage, since the sequence elements from one of the model transcripts were able to convert an exogenous non-target transcript into a target for RNase Y.


Assuntos
Bacillus subtilis , Regulação Bacteriana da Expressão Gênica , Clivagem do RNA , Estabilidade de RNA , RNA Bacteriano , Staphylococcus aureus , Staphylococcus aureus/genética , Staphylococcus aureus/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Conformação de Ácido Nucleico , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA