Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 18(7): 617-27, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10504095

RESUMO

A new imaging modality is introduced to image electrical conductivity of biological tissues via contactless measurements. This modality uses magnetic excitation to induce currents inside the body and measures the magnetic fields of the induced currents. In this study, the mathematical basis of the methodology is analyzed and numerical models are developed to simulate the imaging system. The induced currents are expressed using the A-phi formulation of the electric field where A is the magnetic vector potential and phi is the scalar potential function. It is assumed that A describes the primary magnetic vector potential that exists in the absence of the body. This assumption considerably simplifies the solution of the secondary magnetic fields caused by induced currents. In order to solve phi for objects of arbitrary conductivity distribution a three-dimensional (3-D) finite-element method (FEM) formulation is employed. A specific 7 x 7-coil system is assumed nearby the upper surface of a 10 x 10 x 5-cm conductive body. A sensitivity matrix, which relates the perturbation in measurements to the conductivity perturbations, is calculated. Singular-value decomposition of the sensitivity matrix shows various characteristics of the imaging system. Images are reconstructed using 500 voxels in the image domain, with truncated pseudoinverse. The noise level is assumed to produce a representative signal-to-noise ratio (SNR) of 80 dB. It is observed that it is possible to identify voxel perturbations (of volume 1 cm3) at 2 cm depth. However, resolution gradually decreases for deeper conductivity perturbations.


Assuntos
Diagnóstico por Imagem/métodos , Condutividade Elétrica , Processamento de Imagem Assistida por Computador , Impedância Elétrica , Campos Eletromagnéticos , Estudos de Viabilidade , Humanos , Imagens de Fantasmas
2.
Phys Med Biol ; 44(4): 927-40, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10232806

RESUMO

The forward problem of a new medical imaging system is analysed in this study. This system uses magnetic excitation to induce currents inside a conductive body and measures the magnetic fields of the induced currents. The forward problem, that is determining induced currents in the conductive body and their magnetic fields, is formulated. For a general solution of the forward problem, the finite element method (FEM) is employed to evaluate the scalar potential distribution. Thus, inhomogeneity and anisotropy of conductivity is taken into account for the FEM solutions. An analytical solution for the scalar potential is derived for homogeneous conductive spherical objects in order to test FEM solutions. It is observed that the peak error in FEM solutions is less than 2%. The numerical system is used to reveal the characteristics of the measurement system via simulations. Currents are induced in a 9x9x5 cm body of conductivity 0.2 S m(-1) by circular coils driven sinusoidally. It is found that a 1 cm shift in the perturbation depth reduces the field magnitudes to approximately one-tenth. In addition, the distance between extrema increases. Further simulations carried out using different coil configurations revealed the performance of the method and provided a design perspective for a possible data acquisition system.


Assuntos
Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/métodos , Condutividade Elétrica , Modelos Estatísticos , Planejamento da Radioterapia Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...