Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 124: 253-267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182135

RESUMO

Distribution of PM0.1, PM1 and PM2.5 particle- and gas-polycyclic aromatic hydrocarbons (PAHs) during the 2019 normal, partial and strong haze periods at a background location in southern Thailand were investigated to understand the behaviors and carcinogenic risks. PM1 was the predominant component, during partial and strong haze periods, accounting for 45.1% and 52.9% of total suspended particulate matter, respectively, while during normal period the contribution was only 34.0%. PM0.1 concentrations, during the strong haze period, were approximately 2 times higher than those during the normal period. Substantially increased levels of particle-PAHs for PM0.1, PM1 and PM2.5 were observed during strong haze period, about 3, 5 and 6 times higher than those during normal period. Gas-PAH concentrations were 10 to 36 times higher than those of particle-PAHs for PM2.5. Average total Benzo[a]Pyrene Toxic Equivalency Quotients (BaP-TEQ) in PM0.1, PM1 and PM2.5 during haze periods were about 2-6 times higher than in the normal period. The total accumulated Incremental Lifetime Cancer Risks (ILCRs) in PM0.1, PM1 and PM2.5 for all the age-specific groups during the haze effected scenario were approximately 1.5 times higher than those in non-haze scenario, indicating a higher potential carcinogenic risk. These observations suggest PM0.1, PM1 and PM2.5 were the significant sources of carcinogenic aerosols and were significantly affected by transboundary haze from peatland fires. This leads to an increase in the volume of smoke aerosol, exerting a significant impact on air quality in southern Thailand, as well as many other countries in lower southeast Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Benzo(a)pireno , Carcinógenos/toxicidade , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fumaça , Tailândia
2.
J Environ Sci (China) ; 113: 385-393, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34963546

RESUMO

Atmospheric nanoparticles (PM < 0.1 µm) are a major cause of environmental problems and also affect health risk. To control and reduce these problems, sources identification of atmospheric particulates is necessary. Combustion of bituminous coal and biomass including rubber wood, palm kernel, palm fiber, rice stubble, rice straw, maize residue, sugarcane leaves and sugarcane bagasse, which are considered as sources of air quality problems in many countries, was performed. Emissions of particle-bound chemical components including organic carbon (OC), elemental carbon (EC), water-soluble ions (NH4+, Cl-, NO3-, SO42-), elements (Ca, K, Mg, Na) and heavy metals (Cd, Cr, Ni, Pb) were investigated. The results revealed that PM < 0.1 µm from all samples was dominated by the OC component (>50%) with minor contribution from EC (3%-12%). The higher fraction of carbonaceous components was found in the particulates with smaller sizes, and lignin content may relate to concentration of pyrolyzed organic carbon (PyOC) resulting in the differences of OC/EC values. PM emitted from burning palm fiber and rice stubble showed high values of OC/EC and also high PyOC. Non-carbonaceous components such as Cl-, Cr, Ca, Cd, Ni, Na and Mg may be useful as source indicators, but they did not show any correlation with the size of PM.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , China , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise
3.
Chemosphere ; 262: 127846, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32777615

RESUMO

Data for source apportionment estimation was obtained from combustion of 11 types of biomass (rubber wood, palm kernel, palm fiber, sugarcane bagasse, sugarcane leaves, maize residue, rice stubble, rice straw, Xylocarpus moluccensis, Avicennia alba Blume and Rhizophora mucronata) and bituminous coal. Combustion was carried out in a tube furnace and emitted particulate matter (PM) was collected using a nanosampler that segregated particle sizes down to 0.1 µm. Emission factors of PM < 0.1 µm were in the range of 0.11-0.28 g kg-1 (∼1-8% of total PM), except in the case of Rhizophora mucronata, which had an emission factor of 0.071 ± 0.004 g kg-1 (∼18% of total PM). The dominant polycyclic aromatic hydrocarbons (PAHs) found on PM < 0.1 µm were chrysene from combustion of rubber wood, palm kernel, palm fiber, maize residue, Xylocarpus moluccensis, Avicennia alba Blume, Rhizophora mucronata and bituminous coal; benzo[b]fluoranthene from combustion of rice straw, sugarcane bagasse and sugarcane leaves; and benzo[k]fluoranthene from rice stubble combustion. The emission factors of PAHs bound to PM < 0.1 µm from biomass combustion ranged from 0.005 to 0.044 mg kg-1 and the emission factor from bituminous coal combustion was 0.1411 ± 0.0004 mg kg-1. The carcinogenic potency equivalent or benzo[a]pyrene equivalent was highest from bituminous coal combustion (0.1252 mg kg-1) and between 0.0019 and 0.0192 mg kg-1 from biomass combustion. However, emission factors of both PM and particle-bound PAHs from biomass combustion were affected by moisture content of biomass and moisture contents of biomass used in this study were quite low, ranging from 0.165 to 0.863%.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Biomassa , Carcinógenos/análise , Carvão Mineral/análise , Humanos , Tamanho da Partícula , Madeira/química
4.
J Environ Sci (China) ; 97: 149-161, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933730

RESUMO

Transboundary and domestic aerosol transport during 2018-2019 affecting Bangkok air quality has been investigated. Physicochemical characteristics of size-segregated ambient particles down to nano-particles collected during 2017 non-haze and 2018-2019 haze periods were analyzed. The average PM2.5 concentrations at KU and KMUTNB sites in Bangkok, Thailand during the haze periods were about 4 times higher than in non-haze periods. The highest average organic carbon and elemental carbon concentrations were 4.6 ± 2.1 µg/m3 and 1.0 ± 0.4 µg/m3, respectively, in PM0.5-1.0 range at KU site. The values of OC/EC and char-EC/soot-EC ratios in accumulation mode particles suggested the significant influence of biomass burning, while the nuclei and coarse mode particles were from mixed sources. PAH concentrations during 2018-2019 haze period at KU and KMUTNB were 3.4 ± 0.9 ng/m3 and 1.8 ± 0.2 ng/m3, respectively. The PAH diagnostic ratio of PM2.5 also suggested the main contributions were from biomass combustion. This is supported by the 48-hrs backward trajectory simulation. The higher PM2.5 concentrations during 2018-2019 haze period are also associated with the meteorological conditions that induce thermal inversions and weak winds in the morning and evening. Average values of benzo(a)pyrene toxic equivalency quotient during haze period were about 3-6 times higher than during non-haze period. This should raise a concern of potential human health risk in Bangkok and vicinity exposing to fine and ultrafine particulate matters in addition to regular exposure to traffic emission.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar , Aerossóis/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Estações do Ano , Tailândia
5.
J Environ Sci (China) ; 94: 72-80, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563489

RESUMO

Transboundary haze from biomass burning is one of the most important air pollutions in Southeast Asia. The most recent serious haze episode occurred in 2015. Southern Thailand was affected by the haze during September to October when the particulate matter concentration hit a record high. We investigated physical and chemical characteristics of aerosols, including concentration and aerosol size distribution down to sub-micron sizes during haze episodes in 2013 and 2015 and, for reference, an insignificant haze period in 2017. The highest total suspended particulates and PM10 levels in Hat Yai city were 340.1 and 322.5 µg/m3. The mass fractions were nanoparticles (< 100 nm) 3.1%-14.8% and fine particles (< 1 µm) 54.6%-59.1%. Polycyclic aromatic hydrocarbon size distributions in haze periods peaked at 0.75 µm and the concentrations are 2-30 times higher than the normal period. High molecular weight (4-6 ring) PAHs during the haze episode contribute to about 56.7%-88.0% for nanoparticles. The average values of benzo(a)pyrene toxic equivalency quotient were 3.34±2.54ng/m3 in the 2015 haze period but only 0.89±0.17 ng/m3 in 2017. It is clear that particles smaller than 1 µm, were highly toxic. Nanoparticles contributed 19.4%-26.0% of total BaP-TEQ, whereas the mass fraction is 13.1%-14.8%. Thus the nanoparticles were more carcinogenic and can cause greater health effect than larger particles. The fraction of BaP-TEQ for nanoparticles during 2017 non-haze period was nearly the same, while the mass fraction was lower. This indicates that nanoparticles are the significant source of carcinogenic aerosols both during haze and non-haze periods.


Assuntos
Poluentes Atmosféricos/análise , Nanopartículas , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis/análise , China , Cidades , Monitoramento Ambiental , Tamanho da Partícula , Material Particulado/análise , Tailândia
6.
Environ Pollut ; 260: 114031, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32014745

RESUMO

In this study, size-fractionated particulate matters (PM) down to ultrafine (PM0.1) particles were collected using a cascade air sampler with a PM0.1 stage, in Hat Yai city, Songkhla province, southern Thailand during the year 2018. The particle-bound carbonaceous aerosols (CA) as elemental carbon (EC) and organic carbon (OC) were quantified with the thermal/optical reflectance method following the IMPROVE_TOR protocol. The concentrations of different temperature carbon fractions (OC1-OC4, EC1-EC3 and PyO) in the size-fractionated PM were evaluated to discern OC and EC correlations as well as those between char-EC and soot-EC. The results showed that biomass burning, motor vehicle, and secondary organic aerosols (SOC) all contributed to the size-fractionated PM. The OC/EC ratios ranged from 2.90 to 4.30 over the year, with the ratios of PM2.5-10 being the highest, except during the open biomass burning period. The concentration of CA was found to increase during the pre-monsoon season and had its peak value in the PM0.5-1.0 fraction. The long-range transport of PMs from Indonesia, southwest of Thailand toward southern Thailand became more obvious during the pre-monsoon season. Transported plumes from biomass burning in Indonesia may increase the concentration of OC and EC both in the fine (PM0.5-1.0 and PM1.0-2.5) and coarse (PM2.5-10 and PM>10) fractions. The OC fraction in PM0.1 was also shown to be significantly affected by the transported plumes during the pre-monsoon season. Good OC and EC correlations (R2 = 0.824-0.915) in the fine particle fractions indicated that they had common sources such as fossil fuel combustion. However, the lower and moderate correlations (R2 = 0.093-0.678) among the coarser particles suggesting that they have a more complex pattern of emission sources during the dry and monsoon seasons. This indicates the importance of focusing emission control strategies on different PM particle sizes in southern Thailand.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Material Particulado , Aerossóis , Biomassa , Carbono , Cidades , Indonésia , Tamanho da Partícula , Estações do Ano , Tailândia
7.
Chemosphere ; 210: 417-423, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30015132

RESUMO

This research aims to investigate the effects of irradiation energy and residence time of soft X-ray irradiation in the decomposition of sixteen polycyclic aromatic hydrocarbons (PAHs) in smoke particles emitted from the Para rubber wood burning. The burning process was carried out in a tube furnace and the soft X-ray radiation used had a wave length of 0.13-0.41 nm. The irradiated (IR) and non irradiated (N-IR) smoke particles were collected simultaneously using a 10-stage Andersen sampler equipped with an inertial-filter stage (ANIF), in order to determine the physicochemical characteristic of both IR and N-IR smoke particles, including particle size distribution and concentration, and particle-bound PAHs concentration. Results show that the nano-size smoke particles contained the highest amount of PAHs and of carcinogenic potency equivalent (BaP-TEQ). About 75% of PAH compounds on the total smoke particles were decomposed at the highest irradiation energy. Moreover, 4-6 ring PAHs in nanoparticles (<70 nm) were decomposed of up to about 91% at the highest irradiation energy. The decomposition efficiency of PAHs was influenced by particle size, PAHs boiling temperature and irradiation energy. It was higher for PAHs with lower boiling temperature and smaller size particles, while the effect of residence time was not significant.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/efeitos da radiação , Madeira/química , Raios X , Poluentes Atmosféricos/análise , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/análise , Fumaça/análise , Fatores de Tempo , Madeira/efeitos da radiação
8.
Saf Health Work ; 5(2): 86-90, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25180139

RESUMO

BACKGROUND: Urinary 1-hydroxypyrene (1-OHP) was selected as a biomarker of polycyclic aromatic hydrocarbons (PAHs) to explore the accumulation level in the bodies of workers at rubber smoke sheet factories in southern Thailand. METHODS: Spot urine samples were taken from four groups of workers from June 2006 to November 2007. The nonexposure or control groups included habitual cigarette smokers and nonsmokers. The other two groups were workers exposed to particle-bound PAHs from rubber wood smoke and they were nonsmokers. All spot urine samples were analyzed for 1-OHP and creatinine levels. RESULTS: The mean ± standard deviation urinary 1-OHP in the control group of habitual smokers and the nonsmokers was 0.24 ± 0.16 µmol/mol creatinine and not-detected to 0.14 µmol/mol creatinine, respectively. In the workers, the 1-OHP levels on workdays had no significant difference from the 1-OHP levels on the days off. The yearly average 1-OHP level was 0.76 ± 0.41 µmol/mol creatinine whereas the average 1-OHP level during 10 consecutive workdays was 1.06 ± 0.29 µmol/mol creatinine (p > 0.05). CONCLUSION: The urinary 1-OHP levels of workers exposed to PAHs were high. The accumulation of 1-OHP in the body was not clear although the workers had long working hours with few days off during their working experience. Therefore, a regular day off schedule and rotation shift work during high productive RSS should be set for RSS workers.

9.
J Environ Sci (China) ; 26(9): 1913-20, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25193842

RESUMO

The characteristics of the particles of the smoke that is emitted from the burning of biomass fuels were experimentally investigated using a laboratory-scale tube furnace and different types of biomass fuels: rubber wood, whole wood pellets and rice husks. Emitted amounts of particles, particle-bound polycyclic aromatic hydrocarbons (PAHs) and water-soluble organic carbon (WSOC) are discussed relative to the size of the emitted particles, ranging to as small as nano-size (<70nm), and to the rate of heating rate during combustion. differential thermal analysis (DTA) and thermogravimetric analysis (TG) techniques were used to examine the effect of heating rate and biomass type on combustion behaviors relative to the characteristics of particle emissions. In the present study, more than 30% of the smoke particles from the burning of biomass fuel had a mass that fell within a range of <100nm. Particles smaller than 0.43µm contributed greatly to the total levels of toxic PAHs and WSOC. The properties of these particles were influenced by the fuel component, the combustion conditions, and the particle size. Although TG-DTA results indicated that the heating rate in a range of 10-20°C did not show a significant effect on the combustion properties, there was a slight increase in the decomposition temperature as heating rate was increased. The nano-size particles had the smallest fraction of particle mass and particle-bound PAHs, but nonetheless these particles registered the largest fraction of particle-bound WSOC.


Assuntos
Biomassa , Nanopartículas/química , Fumaça/análise , Gases/análise , Compostos Orgânicos/análise , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/análise
10.
J Environ Sci (China) ; 25(4): 751-7, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23923784

RESUMO

Mixed crude palm oil (MCPO), the mixture of palm fiber oil and palm kernel oil, has become of great interest as a renewable energy source. It can be easily extracted from whole dried palm fruits. In the present work, the degummed, deacidified MCPO was blended in petroleum diesel at portions of 30% and 40% by volume and then tested in agricultural diesel engines for long-term usage. The particulates from the exhaust of the engines were collected every 500 hr using a four-stage cascade air sampler. The 50% cut-off aerodynamic diameters for the first three stages were 10, 2.5 and 1 microm, while the last stage collected all particles smaller than 1 microm. Sixteen particle bounded polycyclic aromatic hydrocarbons (PAHs) were analyzed using a high performance liquid chromatography. The results indicated that the size distribution of particulate matter was in the accumulation mode and the pattern of total PAHs associated with fine-particles (< 1 microm) showed a dominance of larger molecular weight PAHs (4-6 aromatic rings), especially pyrene. The mass median diameter, PM and total PAH concentrations decreased when increasing the palm oil content, but increased when the running hours of the engine were increased. In addition, Commercial petroleum diesel (PB0) gave the highest value of carcinogenic potency equivalent (BaP(eq)) for all particle size ranges. As the palm oil was increased, the BaP(eq) decreased gradually. Therefore the degummed-deacidified MCPO blends are recommended for diesel substitute.


Assuntos
Ácidos/química , Agricultura , Gasolina/análise , Material Particulado/análise , Óleos de Plantas/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Emissões de Veículos/análise , Carcinógenos/toxicidade , Óleo de Palmeira , Tamanho da Partícula , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...