Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 121(3): 853-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38108218

RESUMO

Biosurfactants are natural compounds with remarkable surface-active properties that may offer an eco-friendly alternative to conventional surfactants. Among them, mannosylerythritol lipids (MELs) stand out as an intriguing example of a glycolipid biosurfactant. MELs have been used in a variety of sectors for various applications, and are currently commercially produced. Industrially, they are used in the pharmaceutical, cosmetic, food, and agricultural industries, based on their ability to reduce surface tension and enhance emulsification. However, despite their utility, their production is comparatively limited industrially. From a bioprocessing standpoint, two areas of interest to improve the production process are upstream production and downstream (separation and purification) product recovery. The former has seen a significant amount of research, with researchers investigating several production factors: the microbial species or strain employed, the producing media composition, and the production strategy implemented. Improvement and optimization of these are key to scale-up the production of MELs. On the other hand, the latter has seen comparatively limited work presented in the literature. For the most part traditional separation techniques have been employed. This systematic review presents the production and purification methodologies used by researchers by comprehensively analyzing the current state-of-the-art with regards the production, separation, and purification of MELs. By doing so, the review presents different possible approaches, and highlights some potential areas for future work by identifying opportunities for the commercialization of MELs.


Assuntos
Ustilaginales , Glicolipídeos , Tensoativos
2.
J Biotechnol ; 360: 55-61, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36330925

RESUMO

Fermentation technology is commonly used as a mature process to produce numerous products with the help of micro-organisms. However, these organisms are sometimes inhibited by the accumulation of these products or their by-products. One route to circumvent this is via extractive fermentation, which combines the fermentation process with extraction. To facilitate this, novel bioreactor designs are required, such as the semi-partition bioreactor (SPB) which has been recently proposed for in-situ extractive fermentation. The latter combines a fermentation and an extraction unit into a single vessel using a mixer-settler principle. Where the bioproduct is produced in the mixer and removed continuous in the settler. As the SPB functionality is a subject of interest, this study builds on demonstrating different process conditions in the production of a sample bioprocess (lactic acid (LA)) which is susceptible to product inhibition. The results showed a 34.5 g/L LA concentration was obtained in the pH-controlled condition. While LA production can suffer from product inhibition, neutralizing agents can be easily used to curb inhibitory problems, however, the LA fermentation is a simple (and well-studied) example, which can demonstrate an alternative route to avoiding product inhibition (for systems which cannot be rescued using pH control). Hence, to replicate a scenario of product inhibition, two different process conditions were investigated, no pH control with no extraction (non-integrated), and no pH control with integrated extractive fermentation. Key findings showed higher LA concentration in integrated (25.10 g/L) as compared to the non-integrated (14.94 g/L) case with improved yield (0.75 gg-1 (integrated) versus 0.60 gg-1 (non-integrated)) and overall productivity (0.35 gL-1h-1(integrated) versus 0.20 gL-1h-1(non-integrated)) likewise. This is the first demonstration of an SP bioreactor, and shows how the reactor can be applied to improve productivity. Based on these results, the SPB design can be applied to produce any product liable to product inhibition.


Assuntos
Ácido Láctico
3.
Biotechnol Bioeng ; 118(1): 58-71, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876954

RESUMO

Extractive fermentation (or in situ product removal (ISPR)) is an operational method used to combat product inhibition in fermentations. To achieve ISPR, different separation techniques, modes of operation and physical reactor configurations have been proposed. However, the relative paucity of industrial application necessitates continued investigation into reactor systems. This article outlines a bioreactor designed to facilitate in situ product extraction and recovery, through adapting the reaction volume to include a settler and solvent extraction and recycle section. This semipartition bioreactor is proposed as a new mode of operation for continuous liquid-liquid extractive fermentation. The design is demonstrated as a modified bench-top fermentation vessel, initially analysed in terms of fluid dynamic studies, in a model two-liquid phase system. A continuous abiotic simulation of lactic acid (LA) fermentation is then demonstrated. The results show that mixing in the main reaction vessel is unaffected by the inserted settling zone, and that the size of the settling tube effects the maximum volumetric removal rate. In these tests the largest settling tube gave a potential continuous volumetric removal rate of 7.63 ml/min; sufficiently large to allow for continuous product extraction even in a highly productive fermentation. To demonstrate the applicability of the developed reactor, an abiotic simulation of a LA fermentation was performed. LA was added to reactor continuously at a rate of 33ml/h, while continuous in situ extraction removed the LA using 15% trioctylamine in oleyl alcohol. The reactor showed stable LA concentration of 1 g/L, with the balance of the LA successfully extracted and recovered using back extraction. This study demonstrates a potentially useful physical configuration for continuous in situ extraction.


Assuntos
Aminas/química , Reatores Biológicos , Álcoois Graxos/química , Ácido Láctico/química , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...